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Abstract

In this work, various methods for the estimation of the parameter uncertainty and the covariance between the
parameters and the state variables are investigated using the local ensemble transform Kalman filter (LETKF). Two
methods are compared for the estimation of the covariances between the state variables and the parameters: one using a
single ensemble for the simultaneous estimation of model state and parameters, and the other using two separate
ensembles; for the initial conditions and for the parameters. It is found that the method which uses two ensembles
produces a more accurate representation of the covariances between observed variables and parameters, although this
does not produce an improvement of the parameter or state estimation. The experiments show that the former method
with a single ensemble is more efficient and produces results as accurate as the ones obtained with the two separate
ensembles method. The impact of parameter ensemble spread upon the parameter estimation and its associated
analysis is also investigated. A new approach to the optimization of the estimated parameter ensemble spread (EPES) is
proposed in this work. This approach preserves the structure of the analysis error covariance matrix of the augmented
state vector. Results indicate that the new approach determines the value of the parameter ensemble spread that
produces the lowest errors in the analysis and in the estimated parameters. A simple low-resolution atmospheric
general circulation model known as SPEEDY is used for the evaluation of the different parameter estimation
techniques.
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1. Introduction
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circulation models. In Ruiz et al. (2013) we presented a
review of parameter estimation using ensemble based
data assimilation techniques. The application of these
techniques for estimating the model parameters related
to a convective scheme of a simple general circulation
model (GCM) was illustrated using some synthetic
experiments. It was also shown that the parameter
estimation has a positive impact upon the state analysis
and the short to medium range forecast. The ensemble-
based methods are also highly efficient with almost no
extra computational cost.

The ensemble Kalman filter (EnKF) (Evensen 1994)
is an advanced data assimilation method that uses the
non-linear numerical model to evolve the error
covariance matrix. The structure of the error cova-
riance matrix is obtained from an ensemble of
forecasts. If the state vector is augmented including
model parameters, the error covariance matrix can also
represent the sensitivity of the state variables to the
parameters and vice versa.

Because most parameters are not directly observed,
the information contained in the observations is
propagated to the parameters through the error
covariances between the state variables and parame-
ters. The accuracy of the estimated parameters depends
on the amount of data that contains information about
the parameter value and on the accuracy of the
estimated error covariances. Two different approaches
have been used in the literature for estimating the
covariances between the state variables and parame-
ters: one, the so-called simultaneous approach, uses a
single ensemble with perturbations in the initial
conditions and model parameters, to describe the
structure of the augmented state forecast error
covariance matrix (Aksoy et al. 2006; Kang et al. 2011;
Fertig et al. 2007; Tong and Xue 2008). The other
approach known as separate approach (Koyama and
Watanabe 2010) employs two separate ensembles, one
for the initial conditions of the state variables and the
other for the model parameters.

In the EnKF, the estimation of the uncertainty in a
state variable relies on the dynamics of the system and
on the information provided by observations. Howev-
er, in the parameter estimation problem, the model that
governs the evolution of the parameters is not known.
Therefore, changes in the estimated parameters and
their uncertainty are only driven by the information
received from the observations. The estimation of the
parameter uncertainty is a challenge for data
assimilation techniques. Furthermore, stochastic pa-
rameterizations and parameter perturbations for
ensemble forecasting also require some knowledge of
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parameter uncertainty (Posselt and Bishop 2012).

In parameter estimation applications, persistence is
usually used as the model for the parameters. In this
case, the ensemble spread for the estimated parame-
ters, decrease with time and goes to zero eventually.
The parameter ensemble spread will eventually
became too small. To avoid this ensemble collapse, a
special treatment should be applied to keep the
parameter spread large enough. At the same time, the
parameter ensemble spread should not be too large,
because unrealistic values of the parameters can
degrade the skill of the forecast (Tong and Xue 2008)
producing a negative impact upon the analysis quality.

There is also another issue that affects the estimation
of the parameter uncertainty in the EnKF: When the
ensemble size is relatively small, sampling errors in the
estimation of the covariances may artificially reduce
the parameter ensemble spread even faster (Tong and
Xue 2008). In this case, the spread can be reduced by
more than one order of magnitude during the
assimilation of observations. Once the parameter
ensemble spread is too small, the observations cannot
correct its value any more. In this case, this can happen
before the estimated parameter gets close to its optimal
value. This effect is known as filter divergence and is
particularly important when global parameters (i.c.,
parameters which are constant over the entire model
domain) are estimated without using localization, and
the number of observations used in the estimation of
the parameters is much larger than the size of the
ensemble (Tong and Xue 2008; Koyama and Watanabe
2010).

Different approaches have been proposed in the
literature to deal with this particular issue: Koyama
and Watanabe (2010) use multiplicative inflation, with
an inflation coefficient for the parameter ensemble
different from that used for the state variables. In that
work, global parameters were estimated without using
localization, so that the inflation coefficient used for
the parameters has to offset the above mentioned
effects. Aksoy et al. (2006) propose an approach called
the conditional covariance inflation (CCI) in which the
parameter ensemble spread is not allowed to be smaller
than a prescribed threshold. Whenever the parameter
ensemble spread is smaller than the threshold, the
posterior parameter ensemble perturbations are
inflated back to be equal to the threshold. In practice,
given that the initial parameter ensemble spread is
larger than the threshold, the posterior standard
deviation decreases until it reaches the threshold and
then it remains constant for the following assimilation
cycles (Aksoy et al. 2006). A similar approach is used
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by Tong and Xue (2008) but the threshold is manually
tuned for each parameter individually taking into
account the model sensitivity to the parameter. Zhang
(2012) uses a multiplicative factor for the parameter
that is computed taking into account the model
sensitivity to the parameter; however, this sensitivity
has to be quantified offline. Hansen and Penland
(2007) use multiplicative inflation for the parameter
ensemble the multiplicative inflation being selected as
the minimum inflation that avoids filter divergence.
Kang (2009) estimates two dimensional parameters
using localization for the estimation of each local
parameter. A similar approach to that proposed by
Aksoy et al. (2006) is used for the estimation of the
parameter ensemble spread. In addition, in this case,
the inflation factor for the parameters is constrained to
be smaller than the inflation applied to the state
variables. This can be done because as local
parameters are being estimated, the number of
observations used in the estimation of each parameter
is relatively small; thus the spurious reduction of the
parameter ensemble spread is not present in this case
and a relatively small inflation factor can keep the
parameter ensemble spread large enough.

Another alternative for the representation of the
parameter uncertainty and to avoid the reduction of the
parameter ensemble spread, is to add some random
noise to the estimated parameter ensemble to take into
account model error (Ji Sun Kang, personal communi-
cation). In this case, model error arises from the fact
that the estimated parameters are assumed to be
constant in time, while the optimal parameter may be
time-varying.

A method for the estimation of the optimal value for
the parameter ensemble spread has not been provided
so far. So the optimal parameter ensemble spread has
to be found by computationally-expensive trial and
error. The computational cost can be prohibitive if the
number of estimated parameters is larger than 10. In
this work, a new method to estimate the parameter
ensemble spread is proposed and evaluated.

The main objective of this work is to compare the
different approaches for the estimation of the
components of the error covariance matrix associated
to the estimated parameters in the particular case of
global parameters. The different approaches are
evaluated in terms of the accuracy of the estimated
parameters and states using twin experiments in a
perfect model scenario. This paper is organized as
follows: Section 2 presents the methodology. The
experiments are presented in Section 3. Section 4
describes the obtained results and conclusions are
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drawn in Section 5.
2. Methodology

2.1 State estimation using LETKF

To apply the LETKF method for estimating the state
and model parameters, the parameters are augmented
to the state vector, and the error correlations between
the state variables and parameters are derived from the
ensemble in the same way as the error correlations
among the model state variables. As shown by Yang
and DelSole (2009) the state augmentation approach
can be expressed as a two-step EnKF for model
parameters without direct observations, which is the
case for parameters associated with model physics and
numerical schemes parameters. Namely, the update for
the state variables and the update for the parameters
can be computed independently. This subsection
describes the scheme for the state estimation.
Subsection 2.2 introduces the scheme for parameter
estimation.

The algorithm used in this work is the LETKF which
is thoroughly described by Hunt et al. (2007). Here,
only a short description of the methodology is given.
The implementation is similar to that used in Miyoshi
et al. (2007). This implementation has been applied to
several numerical weather prediction models, includ-
ing the Japan Meteorological Agency (JMA) regional
and global models (Miyoshi and Aranami 2006;
Miyoshi and Sato, 2007; Miyoshi et al. 2010), the
AGCM for the Earth Simulator (Miyoshi and Yamane
2007) and most recently, the Weather Research and
Forecasting (WRF) model (Miyoshi and Kunii 2012).
The implementation of parameter estimation within
the LETKF is similar to that used by Kang (2009),
Kang et al. (2011), and Fertig et al. (2007), but a
different localization strategy is used for the parame-
ters.

The Kalman filter analysis equation in the LETKF is
computed in the subspace spanned by the ensemble
members. Following Hunt et al. (2007), the analysis
ensemble mean is obtained by an optimal linear
combination of the background ensemble members as
follows:

=X +X'W', (1)

where X° denotes an m-dimensional vector of the
background ensemble mean state, X" is an m X k matrix
composed of the background ensemble perturbations,
and W is a k-dimensional vector composed of the
weights corresponding to the optimal linear combina-
tions of the ensemble perturbations. Here, m and k
denote the state dimension and the ensemble size,
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respectively. The background ensemble perturbations
(i.e., the columns of the X" matrix) are obtained by
subtracting the background ensemble mean () from
each of the & background ensemble members.

The optimal linear-combination weights (W°) are
given by

w=P(Y)R (YY), 2
where P* is the k X k analysis error covariance matrix in
the ensemble subspace (tilde indicates that the matrix
lays in the ensemble subspace), R is the / X [ observa-
tion error covariance matrix, y’ is the /-dimensional
observation vector, and Y’ is an / X k matrix composed
of the background ensemble perturbations in the
observation space. ¥ is the background ensemble
mean in the observation space, i.e., yb = %Zik:] HEx™),
where H is the observation operator, and x™” denotes
the i" member of the background ensemble. To
compute the columns of the Y’ matrix, H is applied to
each background ensemble member x" and the ensem-
ble mean ¥ is subtracted from each member H x") to
obtain the background ensemble perturbations in the
observation space.

The analysis error covariance matrix in the
ensemble subspace is given by

P'=[(k— DI+ (Y)R'Y] 3)
The analysis ensemble perturbations are obtained by
X'=X"W, @)

where W’ is a weight matrix defined by

W= [(k— D], 5)

Localization of the background error covariance
matrix for the model state variables is applied to avoid
spurious error correlations between distant locations.
In the LETKF, analysis is performed at each grid point
independently; therefore, a very efficient paralleliza-
tion is possible (Miyoshi and Yamane 2007; Miyoshi
and Kunii 2012). A distance-dependent localization
function is applied to the observation errors, so that
distant observations have less weight (Hunt et al. 2007;
Miyoshi et al. 2007; Greybush et al. 2011). Assuming
that R is diagonal, the increase of observational error
with distance is computed as follows:

Ry =
2 2
oo 4] (4] yucpsco

0 otherwise

where Ry, is the modified diagonal element of R
corresponding to the ;” observation, R, is the
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original observational error for that particular observa-
tion, d, is the horizontal distance between the grid
point in consideration and the ;" observation, d, is the
vertical distance, and d,, and d,, are the horizontal and
vertical localization scales, respectively. The vertical
distance is computed as the absolute value of the
difference between the pressure logarithm at the
analyzed grid point and the location of the observation.
In this work, d, (i.e., the distance at which the
observational error is increased by a factor of Ve ) is
fixed at 700 km, and d,, is fixed at 0.1. Observations
farther than a certain vertical distance (D,) or a certain
horizontal distance (D,) are omitted for the local
analysis. D, and D, are defined by

Dh =2 mdhs, (6)
Vv 3
D=2 /% d, (7)

following Miyoshi et al. (2007). Note that, as
discussed in that paper, the cut-off threshold is
imposed mainly to improve the computational
efficiency and if its value is sufficiently large, then the
discontinuity that might be introduced is small.

A common issue of the ensemble based data
assimilation schemes is the lack of dispersion in the
background and analysis ensembles in comparison to
their actual errors. To avoid filter divergence
associated with this particular issue, multiplicative
inflation (Anderson and Anderson 1999) is used as in
Hunt et al. (2007). The inflation parameter for the
model state variables was tuned manually and set to
1.08 throughout this study.

2.2 Parameter estimation using LETKF

As stated before, when there are no direct
observations of the estimated parameters, the assimila-
tion can be split into two independent steps: one for the
estimation of the state variables and the other for the
estimation of the parameters. Two methods for
parameter estimation are evaluated in this work:
simultaneous and separate estimation.

a. Simultaneous estimation method

In the simultancous estimation method, hereinafter
referred as the simultaneous method, a single ensemble
is used for the augmented state vector that contains
both state variables and parameters. The model is
changed slightly for each ensemble member owing to
parameter evolution. The analysis ensemble mean for
the parameters X,, is given by the LETKF update:
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simultaneous method.

=X+ X'W, (8)

where X, is the m, vector of background parameter
ensemble mean (with m, the number of the estimated
parameters), X, is the m, X k background parameter
ensemble perturbation matrix. The weight vector for
the parameters is obtained using (2). Note that these
weights contain the information of the state variables
in the observation space and the error correlation
between the state variables and parameters.

The estimated parameter perturbations are obtained
using

X=X, W*, )

where W* is the transformation matrix defined in (5).
The analysis covariance matrix, P*, for the parameters
is calculated using the observation error covariance
matrix without localization as will be discussed later.
After each data assimilation step, the analyzed state
and parameters are used for the next forecast. The
simultaneous estimation cycle is illustrated in Fig. 1.

Individual parameter ensemble members are
checked after each assimilation step to see if they
remain within a realistic range defined a priori based
on the physical meaning of the parameter. If the
estimated parameter value for a given ensemble
member is outside this range, this parameter is reverted
to the physically meaningful range.

b. Separate estimation method

The separate estimation method, hereinafter referred
as the separate method, was introduced by Koyama
and Watanabe (2010). It employs two separate

Schematic representation of the initial condition and parameter estimation data assimilation cycles using the

ensembles for the state variables and parameters. In the
ensemble of state variables, only the state variables are
perturbed while the parameters are not. Similarly, the
other ensemble has perturbations of only the
parameters. Although Koyama and Watanabe (2010)
use a parameter ensemble for each member of the
state-variables ensemble, in this work, a computation-
ally cheaper variation of the method is examined. The
standard LETKF assimilation (1)—(5) is performed for
the model-state analysis using & ensemble members,
which share the parameters from the parameter
ensemble mean. The resulting analysis ensemble mean
of the state variables is used as the initial condition for
the parameter ensemble. The weights in (8) and (9) are
computed using the ensemble with parameter perturba-
tions. The parameter ensemble has k, members. In
general, &, is smaller than £ since the dimension of the
parameter space is smaller than the state variables
space. This does not remain true in the case of the
estimation of the model bias where the parameter and
the state space may have a similar size.

The use of the dedicated parameter ensemble in the
separate method isolates the sensitivity of the system
to the parameters in the hope that a more robust
estimation of the optimal parameter values could be
obtained. In the original implementation of Koyama
and Watanabe (2010), the impact of initial condition
error in the estimation of the parameters is reduced by
using different state ensemble members as initial
conditions for the parameter ensemble and then
averaging the results. However, this approach leads to
a significant increase of the computational cost as
Koyama and Watanabe pointed out. The simplification
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Fig. 2.
separated approach.

proposed here aims to retain the advantage of the
original approach while reducing its computational
cost. The current implementation is still computation-
ally more expensive than the simultaneous method. A
schematic representation of the separate parameter
estimation cycle is shown in Fig. 2.

2.3 Parameter uncertainty

As stated before, the uncertainty of most parameters
is unknown a priori. The parameter uncertainty
depends not only on the model sensitivity to the
parameters but also on the errors in the state variables
and in the observations.

In this work, parameters are sequentially estimated
as in an operational data assimilation cycle and the
following three approaches are used to determine the
spread of the parameter ensemble after each assimila-
tion step. The first approach is the conditional
covariance inflation (CCI) introduced by Aksoy et al.
(2006) in which the parameter ensemble spread is
restored to a prescribed value when it becomes smaller
than the threshold. The prescribed value has to be
manually tuned. The second approach is motivated by
the CCI approach, the trace of the error covariance
matrix for the parameters is restored to a prescribed
value after the assimilation. After the update of the
parameter ensemble perturbations using (9), the

Schematic representation of the initial condition and parameter estimation data assimilation cycles using the

parameter ensemble spread is increased by factor of

_ r(X,CX,)

A=
T Xeex:)

(10)
where # stands for the trace of a matrix, X, and X, are
the background and analysis parameter perturbations
matrices of size m, X k,. C is a normalization matrix
that takes into account that parameters can take values
which differ by several orders of magnitude. For the
convective parameters used in this work, normaliza-
tion is not required since the model sensitivity to these
parameters is similar in magnitude, so that in this case
C is equal to the identity matrix.

The coefficient A, is the same for all the parameters
instead of being computed individually for each
parameter as in the CCI approach. This approach will
be referred to as total conditional covariance inflation
(TCCI) because the total parameter space variance is
restored to a time independent value (even though the
spread of each individual parameter can fluctuate in
time). This approach avoids the collapse of the
parameter ensemble spread and also conserves the
shape of the posterior parameter error covariance
matrix provided by the square root filter. This is an
advantage of TCCI over CCI where the posterior error
covariance structure is not conserved since a different
inflation factor is applied to each parameter.
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Table 1. True, initial, and imperfect-model parameter values used in the experiments.
The selected parameters are the inverse of the convective adjustment time scale
(TRCNV), the boundary layer relative humidity threshold for convection initiation
(RHBL), and the maximum lateral entrainment rate (ENTMAX).

459

Parameter True value Initial value Imperfect-model value
TRCNV [hr '] 0.16 0.50 0.50
RHBL [unitless] 0.90 0.80 0.80
ENTMAX [unitless] 0.50 0.30 0.30

The third method for the estimation of parameter
ensemble spread is a new approach referred to as the
estimated parameter ensemble spread (EPES). The
weights for the parameter background ensemble
perturbations W, are multiplied by a factor

A= /%, (11)
(k= 1)tr(P°)

note that 7 (P") = k/(k— 1) in the ensemble space. The
updated parameter ensemble is computed using the
following expression:

Xi=X,A.W-. (12)

With this factor A. the trace of the analysis error
covariance matrix in the ensemble space equals the
trace of the background error covariance matrix in the
ensemble space. Namely, the total global ensemble
spread (including both state variables and parameters)
after the assimilation is assumed to be the same as the
forecast ensemble spread, but preserving the structure
of the analysis error covariance matrix. The inflation
factor (11) is applied to the parameter perturbations
only. This approach prevents the parameter ensemble
spread to collapse owing to the use of a large number
of observations to estimate only a small number of
parameters. It also retains the structure of the analysis
error covariance matrix. In particular, the relationship
among the uncertainties in the different parameters is
preserved as well as the relationship between the
uncertainties in the parameters and in the state
variables. No parameter normalization is required in
this approach since the spread is computed in the
ensemble subspace. This approach allows an individu-
al evolution for the spread of each parameter and also
the evolution of the total parameter ensemble spread.
Note that in the data assimilation step, when
parameters are estimated, no inflation is applied to the
state variables. The inflation in the state variables is
only used when the state estimation is performed.

3. Experiments

The experimental setting is the same as in Ruiz et al.
(2013), here just a brief description is given (see Ruiz et
al. (2013) for further details about the experimental
setting). The SPEEDY model (Molteni 2003) is used in
the experiments which is an intermediate complexity
atmospheric GCM. The experiments conducted for the
intercomparison of the different approaches are twin
experiments in which the synthetic observations are
produced with the model (Miyoshi 2005; Kang 2009;
Kang et al. 2011; Fertig et al. 2009, 2007; Miyoshi
2011). The three parameters of the convective scheme
of the SPEEDY model that shows the strongest
sensitivity (i.e., TRCNV, RHBL, and ENTMAX) are
estimated in these experiments using LETKF. As has
been shown in Ruiz et al. (2013), this parameters have a
strong impact upon model performance.

The parameters used in the generation of the nature
or true run will be referred as the true model
parameters. As in Ruiz et al. (2013), two different
nature simulations are generated. One with time
constant parameters equal to the default SPEEDY
model parameters (Table 1) and another using
temporally-varying parameters specified as follows:

x,(f) = a cos(£21) + x,(0) (13)

where a is the amplitude of the parameter oscillations
that is different for different parameters, ¢ is time, £2 is
the frequency of parameter oscillations which is the
same for each parameter and x,0) is a reference
parameter set which in these experiments is equal to
the set of parameters used in the constant parameter
nature run (Table 1). 2 = % day ' is used in the experi-
ments. The nature simulations are generated for three
months from January 1" to March 31". The simulated
observing network is the same used in Ruiz et al.
(2013) and consists of regularly spaced observations
located on every other model grid point and every
model vertical level. Observations are available every
six hours which is equal to the time between two
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Time evolution of the three estimated parameters for the simultaneous method with CCI: TRCNV, black solid line,

ENTMAX, light grey solid line, and RHBL, dark grey solid line. The shade around the estimated parameter indicates the
ensemble spread (* one parameter ensemble perturbation spread). The true parameter values are also indicated:
TRCNV, black dashed line, ENTMAX, light grey dashed line, and RHBL dark grey dashed line. Panel (a) shows the
results for the experiment with an initial parameter ensemble spread of 2.9 X 10 * and panel (b) the results for the
experiment with an initial ensemble spread of 2.9 X 10>. In both cases the true parameters are constant in time.

assimilations.

The model used in the data assimilation cycle is the
same as the one used in the nature runs, except the
parameters in the nature simulations are set to the true
values while the parameters in the data assimilation
cycle are being estimated. This implies that although
the model used in the data assimilation system is
imperfect, the imperfection is purely due to the
imperfect values of the three model parameters.

The initial parameter values for the first cycle are
different from the true values, as shown in the “initial
value” column of Table 1. The value of different
parameters, with different units, cannot be directly
compared. Therefore, in this work, parameters are
scaled by the width of their physically meaningful
range. This width is set to 1 7 ' for TRCNV and to 1
for the non-dimensional parameters ENTMAX and
RHBL. Hereafter, all the values expressed in the text
corresponds to the normalized non-dimensional
parameter values.

4. Results

Two sets of experiments are examined. First, one set
of experiments explores the sensitivity to parameter
ensemble spread using the approaches introduced in
Section 2.3. Second, experiments comparing the two
methods of parameter estimation, simultaneous
method, and separate method, are analyzed.

4.1 Comparison of parameter spread computation
approaches
The experiments in this section compare the three

approaches for parameter ensemble spread computa-
tion, the CCI, TCCI and EPES as defined in Section
2.3. They are based on the simultaneous method for the
estimation of the state and the parameters with an
ensemble size of 20 members and an assimilation
window length of six hours. For each approach, 15
assimilation experiments were conducted with an
initial ensemble spread between 2.5 X 10 and 2.0 %
10" logarithmically spaced. Manual tuning of the
parameter ensemble spread suggests that the optimum
spread value is around 2.5 X 10 °, thus the selected
range contains the optimal value. At the beginning of
each data assimilation experiment, the same value is
assigned to the spread of each parameter. The
parameter perturbations are randomly generated
assuming a normal distribution with no correlations
among the different parameters.

Figure 3a shows the estimated parameter evolution
using the CCI approach for temporally fixed
parameters. The initial parameter ensemble spread is
2.9 X 10°. As has been discussed in Ruiz et al. (2013),
the estimated parameters converge to the true
parameter value in less than 20 days; after that, the
estimated parameters oscillate around the true value.
This oscillation might be mostly associated with the
uncertainty coming from errors in state and in
observations. The results are quite sensitive to the
initial parameter ensemble spread. If the initial
ensemble spread is set to 2.9 X 10°° (Fig. 3b), two of
the three parameters fail to converge to their true
values. Note that TRCNV (black solid line) is close to
the ENTMAX true value is 0.5, instead of its true value
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Time evolution of the three estimated parameters for the simultaneous method with EPES: TRCNV, black solid

line, ENTMAX, light grey solid line, and RHBL, dark grey solid line. The shade around the estimated parameter
indicates the ensemble spread (= one parameter ensemble perturbation spread). The true parameter values evolution are
also indicated: TRCNV, black dashed line, ENTMAX, light grey dashed line, and RHBL, dark grey dashed line. Panel
(a) shows the results for the experiment with an initial parameter ensemble spread of 2.9 X 10 and panel (b), as in (a),
but for the time dependent parameters. In both cases the true parameters are constant in time.

which is 0.16. Therefore, a conclusion of the
experiments is that the initial ensemble spread for the
CCI approach has to be manually tuned to obtain a
good estimation of the parameters. A similar
sensitivity of the estimated parameters to the initial
ensemble spread when CCI is used is obtained when
the true parameters are time dependent (not shown).
Figure 4 shows the estimated parameter evolution
using the TCCI approach. Results are similar to the
ones obtained with CCI. The ensemble spread varies
with time among the different parameters (Fig. 4a)
even when the total spread associated with the
parameters is fixed in time. Those parameters
associated with a stronger model sensitivity have

lower spread. This is consistent with the idea that the
parameters with stronger model sensitivity can be
more efficiently constrained by the observations. This
shows that the structure of the analysis error
covariance matrix for the parameters as estimated with
the ensemble square root filter has valuable informa-
tion about the model sensitivity to the parameter and
that this information should be taken into account. As
in the CCI experiment, when the total parameter
ensemble spread is too small, the estimated parameters
do not converge to their true values (Fig. 4b).

Figure 5 shows the evolution of the estimated
parameters using the novel approach, EPES, that is
proposed in this work. Figure 5a shows the estimated
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parameters using the same initial ensemble spread that
produces the failure in the estimation of the parameters
using CCI and TCCI approaches. As in the TCCI case,
the parameter ensemble spread of each parameter
changes with time, and it is different for each estimated
parameter. Figure 5b shows the estimated parameter
evolution for time-varying parameters using EPES.
The technique can adequately capture the evolution of
the parameters. However, even when the frequency of
the parameter oscillation is low, there is a small
temporal lag between the estimated parameters and
their true evolution. Similar results (not shown) are
obtained with the CCI and TCCI approaches when the
parameter ensemble spread is properly tuned.

As can be seen in Fig. 5b, the EPES approach can
efficiently detect changes in the model sensitivity to
the parameters and it can modify the parameter
ensemble spread according to those changes. For
instance, the spread associated with RHBL changes
with time in the time-dependent parameter experiment.
As has been shown in Ruiz et al. (2013) (in Fig. 1),
when the true parameter is lower than 0.9, the
sensitivity to this parameter is strong and consistently
the estimated parameter ensemble spread is low. In
contrast, when the true parameter is over 0.9, the
model is almost insensitive to changes in this
parameter and the estimated ensemble spread for this
parameter increases. A similar behavior is obtained for
the TRCNV parameter, which also shows some
asymmetries in the model sensitivity to the parameter.
For the ENTMAX parameter, the cost function of the
parameter is symmetric and so the parameter ensemble
spread is almost the same independently of the value of
the estimated parameter.

The evolution of the parameter ensemble spread by
the TCCI and the EPES for 4 selected initial parameter
ensemble spread values is shown in Fig. 6. Both
methods can adequately capture the differences in the
parameter ensemble spread for the different parame-
ters consistently with the model sensitivity to each
parameter (compare Figs. 6a and 6b). The spread of
TRCNYV parameter is almost half of the spread of
ENTMAX in almost all the experiments presented in
the figure. This is because model sensitivity to
ENTMAX is much weaker. In the case of the TCCI
approach, the parameter ensemble spread depends on
its initial value because the sum of the ensemble
spreads of the three parameters is fixed in time. In the
case of the EPES approach, the parameter ensemble
spread is independent of the initial value and only the
experiment starting with the lowest parameter
ensemble spread is shown. In this experiment, the
parameter ensemble spread rapidly increases with time
during the first data assimilation cycles, and converges
to the total parameter spread of approximately 2.5 X
10 *. The experiments that used the EPES approach
converge to the same value independently of the initial
parameter ensemble spread (not shown). This value is a
measure of the uncertainty of the estimated parameter
given the available information.

The impact of the different approaches for the
computation of the parameter ensemble spread on the
error in the state variables is examined. The analysis
error for the state variables is computed using a root
mean squared error (RMSE) weighted by the inverse of
the observational error:
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RMSE = \/% € —%) 4 (@ -X). (14)
Where A4 defines the norm and is a diagonal matrix of
size N X N which contains the typical error magnitudes
of each state variable. The typical error magnitudes are
chosen to be equal to the observational errors of each
variable. Only the model state variables are considered
for the computation of the analysis RMSE. The time
averaging is computed using the last 200 cycles (=~ 50
days) to assure that convergence has been reached. A
perfect model experiment (i.e., a data assimilation
cycle using the true parameter values) and an imperfect
model experiment were also performed. For the
constant parameter case, the imperfect model experi-
ment consists of a data assimilation cycle using the
model with an incorrect set of parameters as shown in
Table 1. In the case of the time-varying parameters, the
imperfect model consists of a data assimilation cycle
which uses the time average of the true time-varying
parameters. In this case, the imperfect model does not
take into account the time variability of the true
parameters; however, the selected value for the
parameters is one of the most reasonable choices that
can be done.

Figure 7a shows the time-averaged analysis RMSE
for the experiments using the CCI, TCCI, and EPES
approaches for the experiment with time-independent
true parameters. The analysis error corresponding to
the parameter estimation experiments is close to the
analysis error of the perfect model for most of the
experiments. This shows that the parameter estimation
is successful in terms of finding the optimal parameter
value and in terms of the reduction of analysis error

associated with model error. For the CCI and TCCI
approaches, the RMSE is larger for non-optimal initial
parameter ensemble spread. This is due to two main
reasons: Larger parameter ensemble spreads produce
an increase in the parameter estimation noise that
degrade the analysis. Moreover, for the two largest
parameter ensemble spreads, estimated parameters of
some ensemble members usually fall outside the
prescribed range for the parameters. In these cases, the
estimated parameter values are forced back to the
prescribed range and the order and the mean of the
parameter ensemble are not preserved, thus degrading
the estimation. On the other hand, if the parameter
ensemble spread is too small, it will result in the lack of
convergence in the parameters (or a convergence rate
that is too slow). The RMSE is minimum for a range of
initial parameter spread values which is almost the
same for both methods. Away from this range, RMSE
values are lower for the TCCI approach compared to
CClI indicating that taking into account the relationship
among the uncertainty in the different parameters
produces a positive impact in the analysis.

In the case of the EPES approach, the analysis
RMSE is almost independent of the initial parameter
ensemble spread. The EPES RMSE is lower than the
RMSE for the CCI and TCCI approaches for almost all
of the initial parameter ensemble spread values. This
shows that the estimated ensemble spread approach
not only converges to the same value of parameter
ensemble spread independently of the initial ensemble
spread, but also it converges to the value that produces
the lowest analysis error at almost no additional
computational cost. This shows that the augmented
state analysis error covariance matrix obtained with the
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ensemble transform Kalman filter has information
about the relative magnitude of the spread in the state
variables and in the parameters as well as among the
parameters. This information should be used, as in this
case, to estimate the parameter uncertainty.

Similar results are found in the case of time-
dependent parameters Fig. 7b. In this experiment, the
difference between the perfect and imperfect model
experiment can be interpreted as the impact of not
taking into account the time dependence of the model
parameters. A difference of the time-varying parame-
ters with respect to the constant parameters is that
independently of the parameter ensemble spread
approach, the analysis error in the parameter
estimation experiments are slightly higher than in the
perfect model case. This is probably because the nature
run is evolved with a model with smooth time-varying
parameters, although the parameters used in the
forecast model of the assimilation system are assumed
to be constant within the assimilation window the
estimated parameters change abruptly at the assimila-
tion times, producing a piecewise-constant time
variation of the estimated parameters. In the case of the
time-varying parameters once again EPES approach
produces the lowest RMSE for all the initial ensemble
spread values; the CCI and TCCI approaches produce
low RMSE values for a narrow initial spread range.

4.2  Comparison of the simultaneous and separate
methods

The data assimilation experiments using different

initial parameter ensemble spreads are repeated using

the separate method. The CCI approach is used in this

case. The sizes of the state ensemble and parameter

Vol. 91, No. 4
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As in Fig. 5, but for the parallel method and the CCI approach.

ensemble are chosen to be 20 and 5 members,
respectively. Preliminary tests showed that 5 members
are sufficient to obtain an accurate estimation of the
parameters. Note that there are only three free
parameters.

Figure 8a shows the evolution of the estimated
parameters with an initial ensemble spread of 2.5 X
10 ? using the separate method for the case of a
constant true parameter. The separate method can find
the correct value for the RHBL and ENTMAX
parameters. However, the TRCNV parameter is not
estimated correctly. The reason for the small bias in the
estimation is not clear, but as will be shown, this bias
has almost no effect upon the analysis quality. For the
time-varying parameter experiment, the separate
method provides good estimates for the parameter
RHBL (Fig. 8b). However, there is an underestimation
of the amplitude of the oscillation in TRCNV and an
overestimation of the amplitude in the oscillation of
ENTMAX.

In the separate method (Fig. 8), the estimated para-
meters show a higher frequency variability than in the
simultaneous method (Fig. 5). One possible reason is
that in the case of the simultaneous method, noise in
the parameter estimation may be connected to
relatively low-frequency errors in the state variables.
In fact, the RMSE of the individual ensemble members
in the simultaneous method shows oscillations that
have similar frequencies to those found in the
estimated parameter (not shown). The low-frequency
error in the state variables is also present in the perfect
model experiment in which no parameter estimation is
performed. This effect is not present in the separate
method since all parameter ensemble members start
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from the same initial state and thus the estimation error
might be dominated by random errors in the
observations.

The RMSE for different initial spreads using the
separate method is shown in Fig. 9. The separate
method achieves its lowest analysis RMSE for smaller
initial parameter ensemble spread values. The
sensitivity of the analysis RMSE to the initial
ensemble spread is also weaker for this method. This
might be because the sensitivity of the model to the
parameters is isolated from the sensitivity to the initial
conditions in the case of the separate method. Under
these conditions, LETKF can obtain the correct value
for the parameters even when the impact of the
parameter perturbations is much smaller than the
sensitivity to the initial condition perturbations. This
can explain why even for the lowest initial parameter
ensemble spread the separate method is successful in
estimating the parameters while the simultaneous
method, using CCI parameter spread approach, fails.
The minimum RMSE obtained with the separate and
the simultaneous methods are almost the same.

To further explore how the separate and simultane-
ous method represent the covariances between errors
in the parameters and errors in the state variables, these
covariances are explicitly computed from the ensem-
ble for all the variables and for the full length of the
experiment. Figure 10 shows the covariance between
the specific humidity and the TRCNV parameter for

the lowest model level and for the 300" assimilation

cycle. Figure 10a, generally shows negative cova-
riance between TRCNV and specific humidity near the
surface. As TRCNV increases, the strength of the
parametrized convection increases and more moisture
is transported upward from the boundary layer. Then,
the specific humidity in the lowest model level
decreases. In the separate method, there is a strong
spatial correlation between the regions where convec-
tion is active and the regions where the correlation
between TRCNV and low-level moisture is strong.
This covariance is physically consistent with the
expected sensitivity of the model to changes in this
parameter as discussed above.

In the case of the simultaneous method (Fig. 10b),
the spatial distribution of the covariance between
TRCNV and low-level moisture in the model is
noisier. The physically consistent pattern is still
present, however, there are also regions where the
covariances are relatively large and no precipitation is
present. The noise comes from the perturbations in the
initial conditions that produce spurious covariances
between the parameter and the state variables.

Figure 11 shows the covariances for the 300"
assimilation cycle between the wind components at
upper levels and the TRCNV parameter. For the
separate method, a higher TRCNV value, which is
associated with stronger convection, produces en-
hanced upper level divergence. This is expected since
stronger heating at middle levels associated with
convection will produce large-scale upward motion



466 Jounal of the Meteorological Society of Japan

Vol. 91, No. 4

10N 4

TN 2

Fig. 10. Forecasted 6 h total accumulated precipitation (mm, shaded) and covariance between the TRCNV parameter and
the specific humidity at the lowest model level (I X 10"". Panel (a) shows the results for the separate method and (b) for
the simultaneous method. Both panels corresponds to the 300" assimilation cycle.

and divergence at upper levels. In the simultaneous
method, the noise associated with the initial condition
perturbations in the wind field is greater than the
sensitivity of the wind to the convective scheme
parameters, so that finding the enhanced divergence in
convective areas is not considerably easy. This
confirms that the separate method isolates better the
physically consistent covariances between the parame-
ters and the state variables. This corroborates that the
separate method is able to capture the model sensitivity
to changes in the parameters even when this sensitivity
is small compared to the errors in the initial conditions
as has been previously shown in this section.

In the experiments shown thus far, the simultaneous
method may be advantageous because it provides an
unbiased estimation of the parameters. Furthermore,
EPES parameter ensemble spread approach can be
used in the simultaneous method which gives stable
performance independently of the initial parameter
ensemble spread. The computational cost of the two

methods are also different. The simultaneous method
uses essentially the same amount of resources as a
standard data assimilation cycle based on the LETKF,
since the estimation of global parameters is computa-
tionally cheap when the estimation is performed in the
ensemble space. In contrast, the separate method
requires more model simulations to construct the
ensemble of parameter perturbations.

To compare the two methods considering the
computational cost, three assimilation cycles of the
two methods with the same number of model
integrations were conducted, in which the ensemble
sizes were of 25, 45, and 65 members. The size of the
parameter ensemble in the separate method is always
set to 5 members as in the previous experiments, and
only the size of the state ensemble is changed. For
instance, the separate method in the 25-member
experiment uses an ensemble of 20 members for the
state estimation and a 5 member ensemble for the
parameter estimation, while the simultaneous method
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Fig. 12. Time-averaged analysis RMSE for the data

assimilation experiments performed using three different
ensemble sizes. The black bars correspond to the
simultaneous method and the grey bars to the separate
method.
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s). Panel (a) shows the results for the separate method and (b) for
e 300" assimilation cycle.

uses an ensemble of 25 members for the augmented
state estimation. The CCI with an initial spread of
2.5 % 10 % is used in all cases. Figure 12 shows that
the analysis RMSE decreases with ensemble size as
expected for both parameter estimation methods. For
all cases, the simultaneous method produces better
results for the same ensemble size. Furthermore, the
impact of increasing the ensemble size from 45 to 65 is
larger for the simultaneous method.

5. Conclusions

In this work, the sensitivity of the parameter
estimation to the accuracy of the estimation of the
parameter ensemble spread and the covariances
between the parameter and the state variables were
explored. A new approach was introduced and
evaluated for the estimation of the optimal parameter
ensemble spread. The new EPES approach produced a
significant improvement in the parameter estimation.
When parameters were time-dependent the model
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sensitivity to the parameters could also change with
time. In this case, the EPES approach was able to
capture changes in the strength of the model sensitivity
to the parameters adapting the parameter ensemble
spread to the sensitivity level. The EPES approach also
avoided filter divergence even when a large number of
observations is used to estimate global parameters
without using localization and with a limited ensemble
size. Moreover, this approach provided an estimation
of the parameter uncertainty that can be used to
generate optimal parameter perturbations to account
for model uncertainty in ensemble forecasting. This
estimation of the parameter uncertainty might be also
used as a criterion for parameter identifiability. If the
estimated uncertainty is larger than the physically
meaningful range of the parameter, this might indicate
that the parameter is not identifiable, i.e., it cannot be
estimated on the basis of the available information.

The EPES approach uses the information contained
in the analysis error covariance matrix of the
augmented state. In the LETKF method, perturbations
for the parameters and for the state variables are
constructed using a square-root filter method. In this
work, we found that the EPES approach provides a
good estimation of the relative magnitude of the spread
of the different parameters. The relative spread
magnitude was also consistent with the sensitivity of
the model to the parameters.

The application of EPES approach appears to be
promising for estimating on-line parameters augment-
ed to the model state in general circulation models
using LETKF method. In this work, the EPES
approach is applied to the estimation of global
parameters in the general circulation model with no
spatial localization in a perfect model scenario. The
performance of the EPES approach in this scenario is
better and more robust compare with CCI and TCCI
approaches. However, it is not clear whether EPES
approach will still be successfull under more realistic
scenarios, such as the estimation of 2 or 3 dimensional
parameters or in the case of an imperfect model. Future
work will focus on determining whether the EPES
approach can find the optimal parameter ensemble
spread under more realistic conditions.

This study also evaluated two different methods: the
simultaneous method and separate method. The
separate method permitted a better isolation of the
sensitivity of the model state to changes in the
parameter. However, the simultanecous method pro-
duced similar results in terms of the analysis RMSE
and it produced marginally better results in terms of the
error in the estimated parameters. Moreover, the

Vol. 91, No. 4

separate method required additional model integra-
tions compared with a standard assimilation cycle
(without parameter estimation) while the simultaneous
method did not. Both methods only required minor
changes in the model and the assimilation system
codes. When the extra computational effort required
by the separate method was used to increase the
number of ensemble members in the simultaneous
method, the analysis error was reduced more
effectively. These results suggest that among the
different implementations tested in this work, the
simultaneous method with the proposed EPES
approach produced the best results at low extra
computational cost compared with the cost of a
standard assimilation system. Although in the experi-
ments presented in this work, the simultaneous
approach shows some advantages, the separate method
seems to be more robust when the sensitivity of the
model to the parameters is weak, i.e., in cases where
the parameter is less identifiable. This suggests that the
separate method may be advantageous in other
parameter estimation applications. Additional work is
needed to compare these techniques for the estimation
of two and three dimensional parameters and in cases
where the number of available observations is not as
high as in this case.

In the experiments presented in this work, the model
imperfections were directly related to the uncertainty
in the value of the convective scheme parameters. In
real-world applications, the sources of model error are
diverse; such as different parameterizations and
limited resolution. Future work will focus on
parameter estimation with different sources of model
error to examine if the technique reduces model error
even when the estimated parameters cannot explain all
model error sources. Another important issue to be
addressed is whether an optimal spatial distribution for
the parameters can be obtained. Promising results have
been obtained in Kang (2009) for CO, flux sources.
Spatio-temporally dependent parameters could lead to
an improvement of model performance as well as to a
better understanding of the underlying physical
processes.
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