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Abstract

In this work, various methods for the estimation of the parameter uncertainty and the covariance between the

parameters and the state variables are investigated using the local ensemble transform Kalman filter (LETKF). Two
methods are compared for the estimation of the covariances between the state variables and the parameters: one using a

single ensemble for the simultaneous estimation of model state and parameters, and the other using two separate

ensembles; for the initial conditions and for the parameters. It is found that the method which uses two ensembles

produces a more accurate representation of the covariances between observed variables and parameters, although this

does not produce an improvement of the parameter or state estimation. The experiments show that the former method

with a single ensemble is more efficient and produces results as accurate as the ones obtained with the two separate

ensembles method. The impact of parameter ensemble spread upon the parameter estimation and its associated

analysis is also investigated. A new approach to the optimization of the estimated parameter ensemble spread (EPES) is
proposed in this work. This approach preserves the structure of the analysis error covariance matrix of the augmented

state vector. Results indicate that the new approach determines the value of the parameter ensemble spread that

produces the lowest errors in the analysis and in the estimated parameters. A simple low-resolution atmospheric

general circulation model known as SPEEDY is used for the evaluation of the different parameter estimation

techniques.

Keywords data assimilation; parameter estimation; ensemble Kalman filter; error covariance

1. Introduction

Parameter estimation using data assimilation

techniques is emerging as a promising tool to constrain

observationally the large set of uncertain physical

parameters of current ocean and atmospheric general
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circulation models. In Ruiz et al. (2013)we presented a
review of parameter estimation using ensemble based

data assimilation techniques. The application of these

techniques for estimating the model parameters related

to a convective scheme of a simple general circulation

model (GCM) was illustrated using some synthetic

experiments. It was also shown that the parameter

estimation has a positive impact upon the state analysis

and the short to medium range forecast. The ensemble-

based methods are also highly efficient with almost no

extra computational cost.

The ensemble Kalman filter (EnKF) (Evensen 1994)
is an advanced data assimilation method that uses the

non-linear numerical model to evolve the error

covariance matrix. The structure of the error cova-

riance matrix is obtained from an ensemble of

forecasts. If the state vector is augmented including

model parameters, the error covariance matrix can also

represent the sensitivity of the state variables to the

parameters and vice versa.

Because most parameters are not directly observed,

the information contained in the observations is

propagated to the parameters through the error

covariances between the state variables and parame-

ters. The accuracy of the estimated parameters depends

on the amount of data that contains information about

the parameter value and on the accuracy of the

estimated error covariances. Two different approaches

have been used in the literature for estimating the

covariances between the state variables and parame-

ters: one, the so-called simultaneous approach, uses a

single ensemble with perturbations in the initial

conditions and model parameters, to describe the

structure of the augmented state forecast error

covariance matrix (Aksoy et al. 2006; Kang et al. 2011;
Fertig et al. 2007; Tong and Xue 2008). The other

approach known as separate approach (Koyama and

Watanabe 2010) employs two separate ensembles, one

for the initial conditions of the state variables and the

other for the model parameters.

In the EnKF, the estimation of the uncertainty in a

state variable relies on the dynamics of the system and

on the information provided by observations. Howev-

er, in the parameter estimation problem, the model that

governs the evolution of the parameters is not known.

Therefore, changes in the estimated parameters and

their uncertainty are only driven by the information

received from the observations. The estimation of the

parameter uncertainty is a challenge for data

assimilation techniques. Furthermore, stochastic pa-

rameterizations and parameter perturbations for

ensemble forecasting also require some knowledge of

parameter uncertainty (Posselt and Bishop 2012).
In parameter estimation applications, persistence is

usually used as the model for the parameters. In this

case, the ensemble spread for the estimated parame-

ters, decrease with time and goes to zero eventually.

The parameter ensemble spread will eventually

became too small. To avoid this ensemble collapse, a

special treatment should be applied to keep the

parameter spread large enough. At the same time, the

parameter ensemble spread should not be too large,

because unrealistic values of the parameters can

degrade the skill of the forecast (Tong and Xue 2008)
producing a negative impact upon the analysis quality.

There is also another issue that affects the estimation

of the parameter uncertainty in the EnKF: When the

ensemble size is relatively small, sampling errors in the

estimation of the covariances may artificially reduce

the parameter ensemble spread even faster (Tong and

Xue 2008). In this case, the spread can be reduced by

more than one order of magnitude during the

assimilation of observations. Once the parameter

ensemble spread is too small, the observations cannot

correct its value any more. In this case, this can happen

before the estimated parameter gets close to its optimal

value. This effect is known as filter divergence and is

particularly important when global parameters (i.e.,
parameters which are constant over the entire model

domain) are estimated without using localization, and

the number of observations used in the estimation of

the parameters is much larger than the size of the

ensemble (Tong and Xue 2008; Koyama andWatanabe

2010).
Different approaches have been proposed in the

literature to deal with this particular issue: Koyama

and Watanabe (2010) use multiplicative inflation, with

an inflation coefficient for the parameter ensemble

different from that used for the state variables. In that

work, global parameters were estimated without using

localization, so that the inflation coefficient used for

the parameters has to offset the above mentioned

effects. Aksoy et al. (2006) propose an approach called
the conditional covariance inflation (CCI) in which the
parameter ensemble spread is not allowed to be smaller

than a prescribed threshold. Whenever the parameter

ensemble spread is smaller than the threshold, the

posterior parameter ensemble perturbations are

inflated back to be equal to the threshold. In practice,

given that the initial parameter ensemble spread is

larger than the threshold, the posterior standard

deviation decreases until it reaches the threshold and

then it remains constant for the following assimilation

cycles (Aksoy et al. 2006). A similar approach is used
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by Tong and Xue (2008) but the threshold is manually

tuned for each parameter individually taking into

account the model sensitivity to the parameter. Zhang

(2012) uses a multiplicative factor for the parameter

that is computed taking into account the model

sensitivity to the parameter; however, this sensitivity

has to be quantified offline. Hansen and Penland

(2007) use multiplicative inflation for the parameter

ensemble the multiplicative inflation being selected as

the minimum inflation that avoids filter divergence.

Kang (2009) estimates two dimensional parameters

using localization for the estimation of each local

parameter. A similar approach to that proposed by

Aksoy et al. (2006) is used for the estimation of the

parameter ensemble spread. In addition, in this case,

the inflation factor for the parameters is constrained to

be smaller than the inflation applied to the state

variables. This can be done because as local

parameters are being estimated, the number of

observations used in the estimation of each parameter

is relatively small; thus the spurious reduction of the

parameter ensemble spread is not present in this case

and a relatively small inflation factor can keep the

parameter ensemble spread large enough.

Another alternative for the representation of the

parameter uncertainty and to avoid the reduction of the

parameter ensemble spread, is to add some random

noise to the estimated parameter ensemble to take into

account model error (Ji Sun Kang, personal communi-

cation). In this case, model error arises from the fact

that the estimated parameters are assumed to be

constant in time, while the optimal parameter may be

time-varying.

A method for the estimation of the optimal value for

the parameter ensemble spread has not been provided

so far. So the optimal parameter ensemble spread has

to be found by computationally-expensive trial and

error. The computational cost can be prohibitive if the

number of estimated parameters is larger than 10. In

this work, a new method to estimate the parameter

ensemble spread is proposed and evaluated.

The main objective of this work is to compare the

different approaches for the estimation of the

components of the error covariance matrix associated

to the estimated parameters in the particular case of

global parameters. The different approaches are

evaluated in terms of the accuracy of the estimated

parameters and states using twin experiments in a

perfect model scenario. This paper is organized as

follows: Section 2 presents the methodology. The

experiments are presented in Section 3. Section 4

describes the obtained results and conclusions are

drawn in Section 5.

2. Methodology

2.1 State estimation using LETKF

To apply the LETKFmethod for estimating the state

and model parameters, the parameters are augmented

to the state vector, and the error correlations between

the state variables and parameters are derived from the

ensemble in the same way as the error correlations

among the model state variables. As shown by Yang

and DelSole (2009) the state augmentation approach

can be expressed as a two-step EnKF for model

parameters without direct observations, which is the

case for parameters associated with model physics and

numerical schemes parameters. Namely, the update for

the state variables and the update for the parameters

can be computed independently. This subsection

describes the scheme for the state estimation.

Subsection 2.2 introduces the scheme for parameter

estimation.

The algorithm used in this work is the LETKFwhich

is thoroughly described by Hunt et al. (2007). Here,
only a short description of the methodology is given.

The implementation is similar to that used in Miyoshi

et al. (2007). This implementation has been applied to

several numerical weather prediction models, includ-

ing the Japan Meteorological Agency (JMA) regional
and global models (Miyoshi and Aranami 2006;

Miyoshi and Sato, 2007; Miyoshi et al. 2010), the
AGCM for the Earth Simulator (Miyoshi and Yamane

2007) and most recently, the Weather Research and

Forecasting (WRF) model (Miyoshi and Kunii 2012).
The implementation of parameter estimation within

the LETKF is similar to that used by Kang (2009),
Kang et al. (2011), and Fertig et al. (2007), but a

different localization strategy is used for the parame-

ters.

The Kalman filter analysis equation in the LETKF is

computed in the subspace spanned by the ensemble

members. Following Hunt et al. (2007), the analysis

ensemble mean is obtained by an optimal linear

combination of the background ensemble members as

follows:

x
a
= x

b
+X

b
w

a
, (1)

where x
b
denotes an m-dimensional vector of the

background ensemble mean state,X
b
is anm×kmatrix

composed of the background ensemble perturbations,

and w
a
is a k-dimensional vector composed of the

weights corresponding to the optimal linear combina-

tions of the ensemble perturbations. Here, m and k

denote the state dimension and the ensemble size,
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respectively. The background ensemble perturbations

(i.e., the columns of the X
b
matrix) are obtained by

subtracting the background ensemble mean (x
b
) from

each of the k background ensemble members.

The optimal linear-combination weights (w
a
) are

given by

w
a
= P̃

a
(Y

b
)
T
R

−1
(y

o
−y

b
), (2)

where P̃
a
is the k×k analysis error covariance matrix in

the ensemble subspace (tilde indicates that the matrix

lays in the ensemble subspace), R is the l×l observa-

tion error covariance matrix, y
o
is the l-dimensional

observation vector, and Y
b
is an l×kmatrix composed

of the background ensemble perturbations in the

observation space. y
b
is the background ensemble

mean in the observation space, i.e., y
b
=

1

k∑i=1

k
H(x

b(i)
),

where H is the observation operator, and x
b(i)

denotes

the i
th

member of the background ensemble. To

compute the columns of the Y
b
matrix, H is applied to

each background ensemble member x
b(i)
and the ensem-

ble mean y
b
is subtracted from each member H (x

b(i)
) to

obtain the background ensemble perturbations in the

observation space.

The analysis error covariance matrix in the

ensemble subspace is given by

P̃
a
=[(k−1)I+ (Y

b
)
T
R

−1
Y

b
]
−1
. (3)

The analysis ensemble perturbations are obtained by

X
a
=X

b
W

a
, (4)

where W
a
is a weight matrix defined by

W
a
=[(k−1)P̃

a
]

1

2. (5)

Localization of the background error covariance

matrix for the model state variables is applied to avoid

spurious error correlations between distant locations.

In the LETKF, analysis is performed at each grid point

independently; therefore, a very efficient paralleliza-

tion is possible (Miyoshi and Yamane 2007; Miyoshi

and Kunii 2012). A distance-dependent localization

function is applied to the observation errors, so that

distant observations have less weight (Hunt et al. 2007;
Miyoshi et al. 2007; Greybush et al. 2011). Assuming

that R is diagonal, the increase of observational error

with distance is computed as follows:

Rl( j, j) =


Ro( j, j)exp0.5

dh

dhs

2

+ 
dv

dvs

2

 if dh<Dh, dv<Dv

0 otherwise

where Rl( j, j) is the modified diagonal element of R

corresponding to the j
th

observation, Ro( j, j) is the

original observational error for that particular observa-

tion, dh is the horizontal distance between the grid

point in consideration and the j
th
observation, dv is the

vertical distance, and dhs and dvs are the horizontal and

vertical localization scales, respectively. The vertical

distance is computed as the absolute value of the

difference between the pressure logarithm at the

analyzed grid point and the location of the observation.

In this work, dhs (i.e., the distance at which the

observational error is increased by a factor of  e ) is
fixed at 700 km, and dvs is fixed at 0.1. Observations

farther than a certain vertical distance (Dv) or a certain
horizontal distance (Dh) are omitted for the local

analysis. Dv and Dh are defined by

Dh= 2
10

3
dhs, (6)

Dv= 2
10

3
dvs, (7)

following Miyoshi et al. (2007). Note that, as

discussed in that paper, the cut-off threshold is

imposed mainly to improve the computational

efficiency and if its value is sufficiently large, then the

discontinuity that might be introduced is small.

A common issue of the ensemble based data

assimilation schemes is the lack of dispersion in the

background and analysis ensembles in comparison to

their actual errors. To avoid filter divergence

associated with this particular issue, multiplicative

inflation (Anderson and Anderson 1999) is used as in

Hunt et al. (2007). The inflation parameter for the

model state variables was tuned manually and set to

1.08 throughout this study.

2.2 Parameter estimation using LETKF

As stated before, when there are no direct

observations of the estimated parameters, the assimila-

tion can be split into two independent steps: one for the

estimation of the state variables and the other for the

estimation of the parameters. Two methods for

parameter estimation are evaluated in this work:

simultaneous and separate estimation.

a. Simultaneous estimation method

In the simultaneous estimation method, hereinafter

referred as the simultaneous method, a single ensemble

is used for the augmented state vector that contains

both state variables and parameters. The model is

changed slightly for each ensemble member owing to

parameter evolution. The analysis ensemble mean for

the parameters xp
a
, is given by the LETKF update:
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x
a
p= x

b
p+X

b
pw

a
, (8)

where x
b
p is the mp vector of background parameter

ensemble mean (with mp the number of the estimated

parameters), X
b
p is the mp × k background parameter

ensemble perturbation matrix. The weight vector for

the parameters is obtained using (2). Note that these

weights contain the information of the state variables

in the observation space and the error correlation

between the state variables and parameters.

The estimated parameter perturbations are obtained

using

X
a
p=X

b
pW

a
, (9)

where W
a
is the transformation matrix defined in (5).

The analysis covariance matrix, P̃
a
, for the parameters

is calculated using the observation error covariance

matrix without localization as will be discussed later.

After each data assimilation step, the analyzed state

and parameters are used for the next forecast. The

simultaneous estimation cycle is illustrated in Fig. 1.

Individual parameter ensemble members are

checked after each assimilation step to see if they

remain within a realistic range defined a priori based

on the physical meaning of the parameter. If the

estimated parameter value for a given ensemble

member is outside this range, this parameter is reverted

to the physically meaningful range.

b. Separate estimation method

The separate estimation method, hereinafter referred

as the separate method, was introduced by Koyama

and Watanabe (2010). It employs two separate

ensembles for the state variables and parameters. In the

ensemble of state variables, only the state variables are

perturbed while the parameters are not. Similarly, the

other ensemble has perturbations of only the

parameters. Although Koyama and Watanabe (2010)
use a parameter ensemble for each member of the

state-variables ensemble, in this work, a computation-

ally cheaper variation of the method is examined. The

standard LETKF assimilation (1)̶(5) is performed for

the model-state analysis using k ensemble members,

which share the parameters from the parameter

ensemble mean. The resulting analysis ensemble mean

of the state variables is used as the initial condition for

the parameter ensemble. The weights in (8) and (9) are
computed using the ensemble with parameter perturba-

tions. The parameter ensemble has kp members. In

general, kp is smaller than k since the dimension of the

parameter space is smaller than the state variables

space. This does not remain true in the case of the

estimation of the model bias where the parameter and

the state space may have a similar size.

The use of the dedicated parameter ensemble in the

separate method isolates the sensitivity of the system

to the parameters in the hope that a more robust

estimation of the optimal parameter values could be

obtained. In the original implementation of Koyama

and Watanabe (2010), the impact of initial condition

error in the estimation of the parameters is reduced by

using different state ensemble members as initial

conditions for the parameter ensemble and then

averaging the results. However, this approach leads to

a significant increase of the computational cost as

Koyama andWatanabe pointed out. The simplification
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proposed here aims to retain the advantage of the

original approach while reducing its computational

cost. The current implementation is still computation-

ally more expensive than the simultaneous method. A

schematic representation of the separate parameter

estimation cycle is shown in Fig. 2.

2.3 Parameter uncertainty

As stated before, the uncertainty of most parameters

is unknown a priori. The parameter uncertainty

depends not only on the model sensitivity to the

parameters but also on the errors in the state variables

and in the observations.

In this work, parameters are sequentially estimated

as in an operational data assimilation cycle and the

following three approaches are used to determine the

spread of the parameter ensemble after each assimila-

tion step. The first approach is the conditional

covariance inflation (CCI) introduced by Aksoy et al.

(2006) in which the parameter ensemble spread is

restored to a prescribed value when it becomes smaller

than the threshold. The prescribed value has to be

manually tuned. The second approach is motivated by

the CCI approach, the trace of the error covariance

matrix for the parameters is restored to a prescribed

value after the assimilation. After the update of the

parameter ensemble perturbations using (9), the

parameter ensemble spread is increased by factor of

λf=
tr(X

b
pCX

b
p
T
)

tr(X
a
pCX

a
p
T
)

(10)

where tr stands for the trace of a matrix, X
b
p and X

a
p are

the background and analysis parameter perturbations

matrices of size mp× kp. C is a normalization matrix

that takes into account that parameters can take values

which differ by several orders of magnitude. For the

convective parameters used in this work, normaliza-

tion is not required since the model sensitivity to these

parameters is similar in magnitude, so that in this case

C is equal to the identity matrix.

The coefficient λf is the same for all the parameters

instead of being computed individually for each

parameter as in the CCI approach. This approach will

be referred to as total conditional covariance inflation

(TCCI) because the total parameter space variance is

restored to a time independent value (even though the

spread of each individual parameter can fluctuate in

time). This approach avoids the collapse of the

parameter ensemble spread and also conserves the

shape of the posterior parameter error covariance

matrix provided by the square root filter. This is an

advantage of TCCI over CCI where the posterior error

covariance structure is not conserved since a different

inflation factor is applied to each parameter.
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The third method for the estimation of parameter

ensemble spread is a new approach referred to as the

estimated parameter ensemble spread (EPES). The

weights for the parameter background ensemble

perturbations Wp
a
are multiplied by a factor

λe=


k

(k−1)tr(P̃
a
)
, (11)

note that tr (P̃
b
) = k/(k−1) in the ensemble space. The

updated parameter ensemble is computed using the

following expression:

X
a
p=X

b
pλeW

a
. (12)

With this factor λe the trace of the analysis error

covariance matrix in the ensemble space equals the

trace of the background error covariance matrix in the

ensemble space. Namely, the total global ensemble

spread (including both state variables and parameters)
after the assimilation is assumed to be the same as the

forecast ensemble spread, but preserving the structure

of the analysis error covariance matrix. The inflation

factor (11) is applied to the parameter perturbations

only. This approach prevents the parameter ensemble

spread to collapse owing to the use of a large number

of observations to estimate only a small number of

parameters. It also retains the structure of the analysis

error covariance matrix. In particular, the relationship

among the uncertainties in the different parameters is

preserved as well as the relationship between the

uncertainties in the parameters and in the state

variables. No parameter normalization is required in

this approach since the spread is computed in the

ensemble subspace. This approach allows an individu-

al evolution for the spread of each parameter and also

the evolution of the total parameter ensemble spread.

Note that in the data assimilation step, when

parameters are estimated, no inflation is applied to the

state variables. The inflation in the state variables is

only used when the state estimation is performed.

3. Experiments

The experimental setting is the same as in Ruiz et al.

(2013), here just a brief description is given (see Ruiz et
al. (2013) for further details about the experimental

setting). The SPEEDYmodel (Molteni 2003) is used in
the experiments which is an intermediate complexity

atmospheric GCM. The experiments conducted for the

intercomparison of the different approaches are twin

experiments in which the synthetic observations are

produced with the model (Miyoshi 2005; Kang 2009;

Kang et al. 2011; Fertig et al. 2009, 2007; Miyoshi

2011). The three parameters of the convective scheme

of the SPEEDY model that shows the strongest

sensitivity (i.e., TRCNV, RHBL, and ENTMAX) are
estimated in these experiments using LETKF. As has

been shown in Ruiz et al. (2013), this parameters have a

strong impact upon model performance.

The parameters used in the generation of the nature

or true run will be referred as the true model

parameters. As in Ruiz et al. (2013), two different

nature simulations are generated. One with time

constant parameters equal to the default SPEEDY

model parameters (Table 1) and another using

temporally-varying parameters specified as follows:

xp(t) = a cos(Ωt) + xp(0) (13)

where a is the amplitude of the parameter oscillations

that is different for different parameters, t is time, Ω is

the frequency of parameter oscillations which is the

same for each parameter and xp(0) is a reference

parameter set which in these experiments is equal to

the set of parameters used in the constant parameter

nature run (Table 1).Ω=
2π

90 day
−1

is used in the experi-

ments. The nature simulations are generated for three

months from January 1
st
to March 31

st
. The simulated

observing network is the same used in Ruiz et al.

(2013) and consists of regularly spaced observations

located on every other model grid point and every

model vertical level. Observations are available every

six hours which is equal to the time between two
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RHBL [unitless]

ENTMAX [unitless]
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True value Initial value Imperfect-model value

TRCNV [hr
−1
]

Parameter

Table 1. True, initial, and imperfect-model parameter values used in the experiments.

The selected parameters are the inverse of the convective adjustment time scale

(TRCNV), the boundary layer relative humidity threshold for convection initiation

(RHBL), and the maximum lateral entrainment rate (ENTMAX).

0.80

0.30

0.80

0.30



assimilations.

The model used in the data assimilation cycle is the

same as the one used in the nature runs, except the

parameters in the nature simulations are set to the true

values while the parameters in the data assimilation

cycle are being estimated. This implies that although

the model used in the data assimilation system is

imperfect, the imperfection is purely due to the

imperfect values of the three model parameters.

The initial parameter values for the first cycle are

different from the true values, as shown in the “initial

value” column of Table 1. The value of different

parameters, with different units, cannot be directly

compared. Therefore, in this work, parameters are

scaled by the width of their physically meaningful

range. This width is set to 1 hr
−1

for TRCNV and to 1

for the non-dimensional parameters ENTMAX and

RHBL. Hereafter, all the values expressed in the text

corresponds to the normalized non-dimensional

parameter values.

4. Results

Two sets of experiments are examined. First, one set

of experiments explores the sensitivity to parameter

ensemble spread using the approaches introduced in

Section 2.3. Second, experiments comparing the two

methods of parameter estimation, simultaneous

method, and separate method, are analyzed.

4.1 Comparison of parameter spread computation

approaches

The experiments in this section compare the three

approaches for parameter ensemble spread computa-

tion, the CCI, TCCI and EPES as defined in Section

2.3. They are based on the simultaneous method for the

estimation of the state and the parameters with an

ensemble size of 20 members and an assimilation

window length of six hours. For each approach, 15

assimilation experiments were conducted with an

initial ensemble spread between 2.5×10
−3

and 2.0×
10

−1
logarithmically spaced. Manual tuning of the

parameter ensemble spread suggests that the optimum

spread value is around 2.5× 10
−2
, thus the selected

range contains the optimal value. At the beginning of

each data assimilation experiment, the same value is

assigned to the spread of each parameter. The

parameter perturbations are randomly generated

assuming a normal distribution with no correlations

among the different parameters.

Figure 3a shows the estimated parameter evolution

using the CCI approach for temporally fixed

parameters. The initial parameter ensemble spread is

2.9×10
−2
. As has been discussed in Ruiz et al. (2013),

the estimated parameters converge to the true

parameter value in less than 20 days; after that, the

estimated parameters oscillate around the true value.

This oscillation might be mostly associated with the

uncertainty coming from errors in state and in

observations. The results are quite sensitive to the

initial parameter ensemble spread. If the initial

ensemble spread is set to 2.9×10
−3

(Fig. 3b), two of

the three parameters fail to converge to their true

values. Note that TRCNV (black solid line) is close to
the ENTMAX true value is 0.5, instead of its true value
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Fig. 3. Time evolution of the three estimated parameters for the simultaneous method with CCI: TRCNV, black solid line,

ENTMAX, light grey solid line, and RHBL, dark grey solid line. The shade around the estimated parameter indicates the

ensemble spread (± one parameter ensemble perturbation spread). The true parameter values are also indicated:

TRCNV, black dashed line, ENTMAX, light grey dashed line, and RHBL dark grey dashed line. Panel (a) shows the

results for the experiment with an initial parameter ensemble spread of 2.9 × 10
−2

and panel (b) the results for the

experiment with an initial ensemble spread of 2.9 × 10
−3
. In both cases the true parameters are constant in time.



which is 0.16. Therefore, a conclusion of the

experiments is that the initial ensemble spread for the

CCI approach has to be manually tuned to obtain a

good estimation of the parameters. A similar

sensitivity of the estimated parameters to the initial

ensemble spread when CCI is used is obtained when

the true parameters are time dependent (not shown).
Figure 4 shows the estimated parameter evolution

using the TCCI approach. Results are similar to the

ones obtained with CCI. The ensemble spread varies

with time among the different parameters (Fig. 4a)
even when the total spread associated with the

parameters is fixed in time. Those parameters

associated with a stronger model sensitivity have

lower spread. This is consistent with the idea that the

parameters with stronger model sensitivity can be

more efficiently constrained by the observations. This

shows that the structure of the analysis error

covariance matrix for the parameters as estimated with

the ensemble square root filter has valuable informa-

tion about the model sensitivity to the parameter and

that this information should be taken into account. As

in the CCI experiment, when the total parameter

ensemble spread is too small, the estimated parameters

do not converge to their true values (Fig. 4b).
Figure 5 shows the evolution of the estimated

parameters using the novel approach, EPES, that is

proposed in this work. Figure 5a shows the estimated
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Fig. 4. As in Fig. 3, but for the TCCI approach.

Fig. 5. Time evolution of the three estimated parameters for the simultaneous method with EPES: TRCNV, black solid

line, ENTMAX, light grey solid line, and RHBL, dark grey solid line. The shade around the estimated parameter

indicates the ensemble spread (± one parameter ensemble perturbation spread). The true parameter values evolution are

also indicated: TRCNV, black dashed line, ENTMAX, light grey dashed line, and RHBL, dark grey dashed line. Panel

(a) shows the results for the experiment with an initial parameter ensemble spread of 2.9 × 10
−3

and panel (b), as in (a),

but for the time dependent parameters. In both cases the true parameters are constant in time.



parameters using the same initial ensemble spread that

produces the failure in the estimation of the parameters

using CCI and TCCI approaches. As in the TCCI case,

the parameter ensemble spread of each parameter

changes with time, and it is different for each estimated

parameter. Figure 5b shows the estimated parameter

evolution for time-varying parameters using EPES.

The technique can adequately capture the evolution of

the parameters. However, even when the frequency of

the parameter oscillation is low, there is a small

temporal lag between the estimated parameters and

their true evolution. Similar results (not shown) are
obtained with the CCI and TCCI approaches when the

parameter ensemble spread is properly tuned.

As can be seen in Fig. 5b, the EPES approach can

efficiently detect changes in the model sensitivity to

the parameters and it can modify the parameter

ensemble spread according to those changes. For

instance, the spread associated with RHBL changes

with time in the time-dependent parameter experiment.

As has been shown in Ruiz et al. (2013) (in Fig. 1),
when the true parameter is lower than 0.9, the

sensitivity to this parameter is strong and consistently

the estimated parameter ensemble spread is low. In

contrast, when the true parameter is over 0.9, the

model is almost insensitive to changes in this

parameter and the estimated ensemble spread for this

parameter increases. A similar behavior is obtained for

the TRCNV parameter, which also shows some

asymmetries in the model sensitivity to the parameter.

For the ENTMAX parameter, the cost function of the

parameter is symmetric and so the parameter ensemble

spread is almost the same independently of the value of

the estimated parameter.

The evolution of the parameter ensemble spread by

the TCCI and the EPES for 4 selected initial parameter

ensemble spread values is shown in Fig. 6. Both

methods can adequately capture the differences in the

parameter ensemble spread for the different parame-

ters consistently with the model sensitivity to each

parameter (compare Figs. 6a and 6b). The spread of

TRCNV parameter is almost half of the spread of

ENTMAX in almost all the experiments presented in

the figure. This is because model sensitivity to

ENTMAX is much weaker. In the case of the TCCI

approach, the parameter ensemble spread depends on

its initial value because the sum of the ensemble

spreads of the three parameters is fixed in time. In the

case of the EPES approach, the parameter ensemble

spread is independent of the initial value and only the

experiment starting with the lowest parameter

ensemble spread is shown. In this experiment, the

parameter ensemble spread rapidly increases with time

during the first data assimilation cycles, and converges

to the total parameter spread of approximately 2.5×
10

−2
. The experiments that used the EPES approach

converge to the same value independently of the initial

parameter ensemble spread (not shown). This value is a
measure of the uncertainty of the estimated parameter

given the available information.

The impact of the different approaches for the

computation of the parameter ensemble spread on the

error in the state variables is examined. The analysis

error for the state variables is computed using a root

mean squared error (RMSE)weighted by the inverse of
the observational error:
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Fig. 6. Parameter ensemble spread for the EPES approach as a function of time for the 2.9 × 10
−3

initial parameter

ensemble spread (black tick line) and for the TCCI approach for different initial parameter ensemble spreads: 2.9 ×

10
−3

(grey line with squares), 4.5 × 10
−3

(grey line with triangles), 2.9 × 10
−2

(grey line with circles), and 4.5 × 10
−2

(grey line with crosses), (a) TRCNV and (b) ENTMAX.
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Where A defines the norm and is a diagonal matrix of

size N×Nwhich contains the typical error magnitudes

of each state variable. The typical error magnitudes are

chosen to be equal to the observational errors of each

variable. Only the model state variables are considered

for the computation of the analysis RMSE. The time

averaging is computed using the last 200 cycles (≈50

days) to assure that convergence has been reached. A

perfect model experiment (i.e., a data assimilation

cycle using the true parameter values) and an imperfect

model experiment were also performed. For the

constant parameter case, the imperfect model experi-

ment consists of a data assimilation cycle using the

model with an incorrect set of parameters as shown in

Table 1. In the case of the time-varying parameters, the

imperfect model consists of a data assimilation cycle

which uses the time average of the true time-varying

parameters. In this case, the imperfect model does not

take into account the time variability of the true

parameters; however, the selected value for the

parameters is one of the most reasonable choices that

can be done.

Figure 7a shows the time-averaged analysis RMSE

for the experiments using the CCI, TCCI, and EPES

approaches for the experiment with time-independent

true parameters. The analysis error corresponding to

the parameter estimation experiments is close to the

analysis error of the perfect model for most of the

experiments. This shows that the parameter estimation

is successful in terms of finding the optimal parameter

value and in terms of the reduction of analysis error

associated with model error. For the CCI and TCCI

approaches, the RMSE is larger for non-optimal initial

parameter ensemble spread. This is due to two main

reasons: Larger parameter ensemble spreads produce

an increase in the parameter estimation noise that

degrade the analysis. Moreover, for the two largest

parameter ensemble spreads, estimated parameters of

some ensemble members usually fall outside the

prescribed range for the parameters. In these cases, the

estimated parameter values are forced back to the

prescribed range and the order and the mean of the

parameter ensemble are not preserved, thus degrading

the estimation. On the other hand, if the parameter

ensemble spread is too small, it will result in the lack of

convergence in the parameters (or a convergence rate

that is too slow). The RMSE is minimum for a range of

initial parameter spread values which is almost the

same for both methods. Away from this range, RMSE

values are lower for the TCCI approach compared to

CCI indicating that taking into account the relationship

among the uncertainty in the different parameters

produces a positive impact in the analysis.

In the case of the EPES approach, the analysis

RMSE is almost independent of the initial parameter

ensemble spread. The EPES RMSE is lower than the

RMSE for the CCI and TCCI approaches for almost all

of the initial parameter ensemble spread values. This

shows that the estimated ensemble spread approach

not only converges to the same value of parameter

ensemble spread independently of the initial ensemble

spread, but also it converges to the value that produces

the lowest analysis error at almost no additional

computational cost. This shows that the augmented

state analysis error covariance matrix obtained with the
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Fig. 7. Time-averaged analysis RMSE as a function of initial parameter ensemble spread for the simultaneous method

with the EPES (black line), TCCI (grey dashed line), and CCI (grey solid line) approaches. The time-averaged RMSE

corresponding to the perfect model (grey dashed line) and to the imperfect model (light grey dashed line) are also

included. Constant true parameters experiments (a) and time-varying true parameters (b).



ensemble transform Kalman filter has information

about the relative magnitude of the spread in the state

variables and in the parameters as well as among the

parameters. This information should be used, as in this

case, to estimate the parameter uncertainty.

Similar results are found in the case of time-

dependent parameters Fig. 7b. In this experiment, the

difference between the perfect and imperfect model

experiment can be interpreted as the impact of not

taking into account the time dependence of the model

parameters. A difference of the time-varying parame-

ters with respect to the constant parameters is that

independently of the parameter ensemble spread

approach, the analysis error in the parameter

estimation experiments are slightly higher than in the

perfect model case. This is probably because the nature

run is evolved with a model with smooth time-varying

parameters, although the parameters used in the

forecast model of the assimilation system are assumed

to be constant within the assimilation window the

estimated parameters change abruptly at the assimila-

tion times, producing a piecewise-constant time

variation of the estimated parameters. In the case of the

time-varying parameters once again EPES approach

produces the lowest RMSE for all the initial ensemble

spread values; the CCI and TCCI approaches produce

low RMSE values for a narrow initial spread range.

4.2 Comparison of the simultaneous and separate

methods

The data assimilation experiments using different

initial parameter ensemble spreads are repeated using

the separate method. The CCI approach is used in this

case. The sizes of the state ensemble and parameter

ensemble are chosen to be 20 and 5 members,

respectively. Preliminary tests showed that 5 members

are sufficient to obtain an accurate estimation of the

parameters. Note that there are only three free

parameters.

Figure 8a shows the evolution of the estimated

parameters with an initial ensemble spread of 2.5×
10

−2
using the separate method for the case of a

constant true parameter. The separate method can find

the correct value for the RHBL and ENTMAX

parameters. However, the TRCNV parameter is not

estimated correctly. The reason for the small bias in the

estimation is not clear, but as will be shown, this bias

has almost no effect upon the analysis quality. For the

time-varying parameter experiment, the separate

method provides good estimates for the parameter

RHBL (Fig. 8b). However, there is an underestimation

of the amplitude of the oscillation in TRCNV and an

overestimation of the amplitude in the oscillation of

ENTMAX.

In the separate method (Fig. 8), the estimated para-

meters show a higher frequency variability than in the

simultaneous method (Fig. 5). One possible reason is

that in the case of the simultaneous method, noise in

the parameter estimation may be connected to

relatively low-frequency errors in the state variables.

In fact, the RMSE of the individual ensemble members

in the simultaneous method shows oscillations that

have similar frequencies to those found in the

estimated parameter (not shown). The low-frequency

error in the state variables is also present in the perfect

model experiment in which no parameter estimation is

performed. This effect is not present in the separate

method since all parameter ensemble members start
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Fig. 8. As in Fig. 5, but for the parallel method and the CCI approach.



from the same initial state and thus the estimation error

might be dominated by random errors in the

observations.

The RMSE for different initial spreads using the

separate method is shown in Fig. 9. The separate

method achieves its lowest analysis RMSE for smaller

initial parameter ensemble spread values. The

sensitivity of the analysis RMSE to the initial

ensemble spread is also weaker for this method. This

might be because the sensitivity of the model to the

parameters is isolated from the sensitivity to the initial

conditions in the case of the separate method. Under

these conditions, LETKF can obtain the correct value

for the parameters even when the impact of the

parameter perturbations is much smaller than the

sensitivity to the initial condition perturbations. This

can explain why even for the lowest initial parameter

ensemble spread the separate method is successful in

estimating the parameters while the simultaneous

method, using CCI parameter spread approach, fails.

The minimum RMSE obtained with the separate and

the simultaneous methods are almost the same.

To further explore how the separate and simultane-

ous method represent the covariances between errors

in the parameters and errors in the state variables, these

covariances are explicitly computed from the ensem-

ble for all the variables and for the full length of the

experiment. Figure 10 shows the covariance between

the specific humidity and the TRCNV parameter for

the lowest model level and for the 300
th
assimilation

cycle. Figure 10a, generally shows negative cova-

riance between TRCNV and specific humidity near the

surface. As TRCNV increases, the strength of the

parametrized convection increases and more moisture

is transported upward from the boundary layer. Then,

the specific humidity in the lowest model level

decreases. In the separate method, there is a strong

spatial correlation between the regions where convec-

tion is active and the regions where the correlation

between TRCNV and low-level moisture is strong.

This covariance is physically consistent with the

expected sensitivity of the model to changes in this

parameter as discussed above.

In the case of the simultaneous method (Fig. 10b),
the spatial distribution of the covariance between

TRCNV and low-level moisture in the model is

noisier. The physically consistent pattern is still

present, however, there are also regions where the

covariances are relatively large and no precipitation is

present. The noise comes from the perturbations in the

initial conditions that produce spurious covariances

between the parameter and the state variables.

Figure 11 shows the covariances for the 300
th

assimilation cycle between the wind components at

upper levels and the TRCNV parameter. For the

separate method, a higher TRCNV value, which is

associated with stronger convection, produces en-

hanced upper level divergence. This is expected since

stronger heating at middle levels associated with

convection will produce large-scale upward motion
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Fig. 9. RMSE of the analysis as a function of the initial ensemble spread using the CCI approach and the simultaneous

method (black line) and the separate method (grey line). Panel (a) shows the results for the constant true parameter

experiment and panel (b) shows the results for the time-dependent true parameter experiment. The time-averaged RMSE

corresponding to the perfect model (grey dashed line) and to the imperfect model (light grey dashed line) are also

included.



and divergence at upper levels. In the simultaneous

method, the noise associated with the initial condition

perturbations in the wind field is greater than the

sensitivity of the wind to the convective scheme

parameters, so that finding the enhanced divergence in

convective areas is not considerably easy. This

confirms that the separate method isolates better the

physically consistent covariances between the parame-

ters and the state variables. This corroborates that the

separate method is able to capture the model sensitivity

to changes in the parameters even when this sensitivity

is small compared to the errors in the initial conditions

as has been previously shown in this section.

In the experiments shown thus far, the simultaneous

method may be advantageous because it provides an

unbiased estimation of the parameters. Furthermore,

EPES parameter ensemble spread approach can be

used in the simultaneous method which gives stable

performance independently of the initial parameter

ensemble spread. The computational cost of the two

methods are also different. The simultaneous method

uses essentially the same amount of resources as a

standard data assimilation cycle based on the LETKF,

since the estimation of global parameters is computa-

tionally cheap when the estimation is performed in the

ensemble space. In contrast, the separate method

requires more model simulations to construct the

ensemble of parameter perturbations.

To compare the two methods considering the

computational cost, three assimilation cycles of the

two methods with the same number of model

integrations were conducted, in which the ensemble

sizes were of 25, 45, and 65 members. The size of the

parameter ensemble in the separate method is always

set to 5 members as in the previous experiments, and

only the size of the state ensemble is changed. For

instance, the separate method in the 25-member

experiment uses an ensemble of 20 members for the

state estimation and a 5 member ensemble for the

parameter estimation, while the simultaneous method
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Fig. 10. Forecasted 6 h total accumulated precipitation (mm, shaded) and covariance between the TRCNV parameter and

the specific humidity at the lowest model level (1 × 10
−7
. Panel (a) shows the results for the separate method and (b) for

the simultaneous method. Both panels corresponds to the 300
th
assimilation cycle.



uses an ensemble of 25 members for the augmented

state estimation. The CCI with an initial spread of

2.5× 10
−2

is used in all cases. Figure 12 shows that

the analysis RMSE decreases with ensemble size as

expected for both parameter estimation methods. For

all cases, the simultaneous method produces better

results for the same ensemble size. Furthermore, the

impact of increasing the ensemble size from 45 to 65 is

larger for the simultaneous method.

5. Conclusions

In this work, the sensitivity of the parameter

estimation to the accuracy of the estimation of the

parameter ensemble spread and the covariances

between the parameter and the state variables were

explored. A new approach was introduced and

evaluated for the estimation of the optimal parameter

ensemble spread. The new EPES approach produced a

significant improvement in the parameter estimation.

When parameters were time-dependent the model
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Fig. 11. Forecasted 6 h total accumulated precipitation (mm, shaded) and covariance between the TRCNV parameter and

the wind components at the top of the troposphere (vectors). Panel (a) shows the results for the separate method and (b) for

the simultaneous method. Both panels correspond to the 300
th
assimilation cycle.

Fig. 12. Time-averaged analysis RMSE for the data

assimilation experiments performed using three different

ensemble sizes. The black bars correspond to the

simultaneous method and the grey bars to the separate

method.



sensitivity to the parameters could also change with

time. In this case, the EPES approach was able to

capture changes in the strength of the model sensitivity

to the parameters adapting the parameter ensemble

spread to the sensitivity level. The EPES approach also

avoided filter divergence even when a large number of

observations is used to estimate global parameters

without using localization and with a limited ensemble

size. Moreover, this approach provided an estimation

of the parameter uncertainty that can be used to

generate optimal parameter perturbations to account

for model uncertainty in ensemble forecasting. This

estimation of the parameter uncertainty might be also

used as a criterion for parameter identifiability. If the

estimated uncertainty is larger than the physically

meaningful range of the parameter, this might indicate

that the parameter is not identifiable, i.e., it cannot be

estimated on the basis of the available information.

The EPES approach uses the information contained

in the analysis error covariance matrix of the

augmented state. In the LETKF method, perturbations

for the parameters and for the state variables are

constructed using a square-root filter method. In this

work, we found that the EPES approach provides a

good estimation of the relative magnitude of the spread

of the different parameters. The relative spread

magnitude was also consistent with the sensitivity of

the model to the parameters.

The application of EPES approach appears to be

promising for estimating on-line parameters augment-

ed to the model state in general circulation models

using LETKF method. In this work, the EPES

approach is applied to the estimation of global

parameters in the general circulation model with no

spatial localization in a perfect model scenario. The

performance of the EPES approach in this scenario is

better and more robust compare with CCI and TCCI

approaches. However, it is not clear whether EPES

approach will still be successfull under more realistic

scenarios, such as the estimation of 2 or 3 dimensional

parameters or in the case of an imperfect model. Future

work will focus on determining whether the EPES

approach can find the optimal parameter ensemble

spread under more realistic conditions.

This study also evaluated two different methods: the

simultaneous method and separate method. The

separate method permitted a better isolation of the

sensitivity of the model state to changes in the

parameter. However, the simultaneous method pro-

duced similar results in terms of the analysis RMSE

and it produced marginally better results in terms of the

error in the estimated parameters. Moreover, the

separate method required additional model integra-

tions compared with a standard assimilation cycle

(without parameter estimation) while the simultaneous

method did not. Both methods only required minor

changes in the model and the assimilation system

codes. When the extra computational effort required

by the separate method was used to increase the

number of ensemble members in the simultaneous

method, the analysis error was reduced more

effectively. These results suggest that among the

different implementations tested in this work, the

simultaneous method with the proposed EPES

approach produced the best results at low extra

computational cost compared with the cost of a

standard assimilation system. Although in the experi-

ments presented in this work, the simultaneous

approach shows some advantages, the separate method

seems to be more robust when the sensitivity of the

model to the parameters is weak, i.e., in cases where

the parameter is less identifiable. This suggests that the

separate method may be advantageous in other

parameter estimation applications. Additional work is

needed to compare these techniques for the estimation

of two and three dimensional parameters and in cases

where the number of available observations is not as

high as in this case.

In the experiments presented in this work, the model

imperfections were directly related to the uncertainty

in the value of the convective scheme parameters. In

real-world applications, the sources of model error are

diverse; such as different parameterizations and

limited resolution. Future work will focus on

parameter estimation with different sources of model

error to examine if the technique reduces model error

even when the estimated parameters cannot explain all

model error sources. Another important issue to be

addressed is whether an optimal spatial distribution for

the parameters can be obtained. Promising results have

been obtained in Kang (2009) for CO2 flux sources.

Spatio-temporally dependent parameters could lead to

an improvement of model performance as well as to a

better understanding of the underlying physical

processes.
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