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Power spectrum of a gravity wave propagating in a
shearing background wind
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Abstract. We re-analyze the effect on the spectral tail of
a gravity wave propagating in a shearing background. The
contribution to the spectrum of horizontal wind perturba-
tions for low vertical wavenumbers comes from the Doppler
shifting with a -1 slope and for high wavenumbers from the
leakage effect with slopes ranging between -4 to -2. If leakage
is not present, it becomes necessary to consider the termi-
nation of the wave in order to account for the spectral tail.
We show that the decreasing of the wave amplitude when
the overturning starts, leads to a spectral slope of -3, and
an amplitude proportional to N2 (the square of the Brünt
Väisälä frequency).

Introduction

The energy distribution of horizontal winds and temper-
ature irregularities has an apparent universal behavior in
short vertical wavelength this behavior was first noted in
measured profiles by VanZandt [1982]. There are several
works that associate this fact with different physical inter-
pretations, [Dewan and Good, 1986; Weinstock, 1990; Hines,
1991a].

In the last few years, there are works showing that the
existence of the spectral tail is correlated with the wave ter-
mination. Sato and Yamada [1994] showed that the spec-
trum of one terminating wave with saturated amplitude has
a -4 slope for internal waves while for inertial waves the
slope is -3. Chimonas [1997] modeled the wind irregularities
with a train of gravity waves which have random propaga-
tion speed. He studied two cases; in the first one the waves
terminate abruptly in the overturning condition (where the
Brünt Väisälä frequency is equal to 0) which leads to spec-
tral slopes in a range between -3.1 to -2.4, in the second one
the waves have an oscillating decay between the overturning
condition and the critical level generating spectral tails ly-
ing in the range from -3.9 to -3.6. Pulido and Caranti [1999]
presented evidences in a measured profile that the contribu-
tions to the spectral tail come from localized heights. This
fact suggested the presence of sporadic wave termination
rather than a saturated spectral tail [Smith et al., 1987].

Recently, Giraldez and de la Torre [1998] (hereinafter
GdelaT) analyzed the spectrum of a wave that is refracted
by a linear background wind. Their conclusion was that the
slope is -3.

We re-analyze this case and our conclusions are differ-
ent. We found that the spectral tail in the profiles as
those shown by GdelaT have two different contributions.
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For wavenumber lower than the highest wavenumber present
in the profile, a -1.5 slope is produced by Doppler shifting.
Here we understand “the wavenumber present in the profile”
of this single wave at each altitude as the parameter given
by the dispersion relation. In higher wavenumber the spec-
tral tail is generated by the discontinuity at the extremes
of the interval. In section 2 we formalize these results and
in the following one we use the correct wave function for
a linear background wind and study the effect of the wave
termination.

Comments on the work by Giraldez and
de la Torre

In an attempt to explain the spectral tail of horizontal
wind perturbations of vertical profiles GdelaT pointed to-
wards the wind shear Doppler shifting as a possible cause.
In order to do so they considered a single wave propagat-
ing in a stratified medium with a constant shear. The wave
function they chose to simulate the wave propagation was
the following:

u(z) = u(z0) exp(i k(z) z) (1)

where k(z) = k0
1−U (z)k0/N

, N is the Brunt Vaisala frequency,

k0 is the initial vertical wavenumber (equal to N/c, c phase
speed) and U(z) is the horizontal background wind.

We would like to point out that the function used to
simulate the wave does not satisfy the wave equation. In
fact, the vertical velocity wave equation is given by, [Gill,
1982],

d2w

dz2
+ k(z)2

w = 0, (2)

and using the continuity equation that gives a relation be-
tween u and w a similar wave equation is obtained for u. By
inspection one can verify that (1) is not a solution.

The approximation is correct when the shear background
can be neglected, but in this case the wave would not be
refracted and the wavenumber remains constant.

On the other hand, if the function for the wave is consid-
ered correct, the power spectrum has an analytical solution
(see the appendix I), in particular when the background
wind is linear (U = dzU z), the power spectrum density
(PSD) will be

PSD(k) =
u(z0)2k

1/2
0

2 A L k3/2
(3)

where A = dzU k0
N , and L is the length of the interval. This

expression is only valid for a range of vertical wavenumbers,
k0 < k < k1, where the extremes of the interval are smallest
and largest value of k(z) in the wave equation.

The PSD has a slope of -1.5 in the above wavenumber
range.
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For k > k1 the asyntotic expansion given by Pulido and
Caranti [1999] can be used, giving a Fourier coefficient for
u(z),

C(k) =
1
√
L

∞∑
s=0

1

(ik)s+1
(u(s)(z1)− u(s)(z0)) (4)

where L = z1− z0, and u(s)(z) is the s-derivative of the real
function u(z).

Taking into account only the first two term of the series,
the PSD, which is |C(k)|2, will be given by

PSD(k) =
1

L
[
1

k2
(u(z1)− u(z0))

2

+
1

k4
(u(1)(z1)− u

(1)(z0))
2] (5)

One term contributes with a k−2 and the other with k−4

and since the latter, being the derivative of a wave func-
tion, is out of phase with the former, the leakage can not be
avoided. Leakage being a sort of energy transfer from low
to high wavenumbers (see Pulido and Caranti [1999])

Let us analyze the results presented in GdelaT. They
selected specific parameters for (1): U = 10−4z s−1 and
λ0 = 2π

k0
= 3 km. In Figure 1 the full line shows the

profile for these conditions; the Doppler shifting goes from
k(0) = k0 to k(L) = 1.6 k0 . The spectrum is shown in
Figure 2. The region between vertical lines represents the
region of the refraction (only three Fourier harmonics) while
the spectral tail is completely generated by leakage. The
straight line shows the leakage produced by the discontinu-
ity at the extremes ( 1

Lk2 (u(L)− u(0))2).
The other cases considered in GdelaT only represent

changes in the leakage effect. That is, the changes in the
spectral tail are not due to the parameters used by them.
In fact they noted that the slopes range between -2 to -4
as it can be seen from (5). For example, if the parameters
are U = 10−4z1.05 and λ0 = 3km, the profile does not have
first order discontinuity at the extremes, as it is shown in
Figure 1 (dashed line). Therefore, the tail will be generated
by the discontinuity in the derivative and following (5) the
slope will be -4. Figure 3 shows the power spectrum and

Figure 1. Profile (1), with continuous line λ0 = 3 km, U =
10−4z 1/s, with dashed line λ0 = 3 km, U = 10−4z1.05

Figure 2. Power spectrum for the profile with continuous
line of Figure 1, the straight line represents the first order in the
expansion (5). Vertical lines show the lowest and the highest
wavenumber present in the profile

the approximation given by (5); again we have a negligible
Doppler shifting and the spectral tail is only related to the
leakage effect.

On the PSD when the wave termination
is considered

The solution to the wave equation (e.g. eq. (2)) when a
linear wind background is present, is

w(z) = w0 (1 −A z)1/2−i µ (6)

where µ =
√
N2/dzU2 − 1/4, w represents the vertical per-

turbation velocity, and w0 is the vertical perturbation at
the reference level, z = 0; the horizontal velocity can be
obtained from the continuity equation

u(z) = u0 (1 −A z)−1/2−i µ (7)

where u0 is the amplitude of the perturbation at z = 0.
Replacing in (A5) the power spectrum will be

PSD(k) =
u2

0

LA k
(8)

The interval may contain a critical level, that is, the wind
background equals to the phase speed zc = 1/A. Near a
critical level the wave will become unstable and will start
to loose energy. The static instability condition is N2

T = 0
where NT is the Brunt Vaisala frequency evaluated with the
mean plus, the potential temperature perturbation [Hodges,
1967]. The resulting threshold velocity will be given by:

u(zb) =
1/2− iµ
−1/2− iµ

N

k(zb)
(9)

It should be noticed that the above overturning condition
is applicable for a quasi monochromatic linear wave, that
is, when there are not any non linear wave effects [Hines,
1991a].

When the wave has a saturation amplitude, say u(zb) =
N/k(zb) since µ � 1, the overturning starts. We suppose
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Figure 3. PSD for the profile with dashed line of Figure 1.
Dashed line represents the expansion (5). Vertical lines represent
the lowest and the highest wavenumber present in the profile

that the wave terminates at the critical level and the pertur-
bation profile between overturning condition and the critical
level can be expressed as [Fritts, 1985; Chimonas, 1997],

u(z) =
u0

1− A zb
(1 −A z)1/2−i µ (10)

The contribution to the PSD will be (see Appendix I and
II),

PSD(k) =
u(zb)

2µ2A

Lk3
(11)

This is an important result since not only the -3 slope
is recovered but it is also proportional to N2 through the µ
dependencies (note thatA and u(zb) are independent of N);
which predicts the changes in the power spectra amplitude
between the troposphere and the stratosphere [Dewan and
Good, 1986].

Figure 4. Gravity wave propagating in a linear wind, with
λ0 = 3 km and u = 1 m/s and N = 0.01 1/s. When the wave is
saturated the profile is given by (10)

Figure 5. PSD for the profile of Figure 4. Dashed line repre-
sents the theoretical prediction (11). Vertical line is the wavenum-
ber where the overturning begins

Figure 4 shows the profile of a wave that entered the sat-
uration and fades away as it approaches the critical level
while increasing the spatial frequency rapidly. The param-
eters used for this wave were λ0 = 3km, u0 = 1m/s and
A = 1/10km−1 since the critical level is located at the end
of the interval.

The power spectrum is shown in Figure 5, and it is su-
perimposed with the theoretical prediction which is valid for
k > k(zb), and for the parameters of figure 4, k(zb) = 0.001
cy/m.

Conclusions

We have reinterpreted the Doppler shifting effect on one
wave by a constant background shear. Our results show that
the spectral slope is -1, as long as there is no critical level
within the height interval.

The effect shown in Giraldez and de la Torre [1998] is
entirely due to leakage. That is, the amplitudes in large
wavenumbers, for those analyzed cases, are caused by the
discontinuities at the extremes of the interval. The changes
in the wavenumber due to refraction are not important.

If one accepts the assumption that a wave propagating
analysis can be extrapolated to measured spectra, it is nec-
essary to consider the wave termination to account for the
broad spectrum when leakage is not present. When a wave
is terminating, the combined effects of decaying amplitude
and Doppler shifting result in power spectra, with -3 slopes,
and amplitude proportional to N2.

It is quite interesting to see how the Doppler shifting
leads to spectral shapes according to the functional form
of the background wind (A5). This shows the way to deal
with the problem of evaluating the effects a wave field exerts
upon one particular wave while the WKB approximation is
still valid. However, the corresponding analysis is out of the
scope of the present work.

Finally, there are several effects that should be kept in
mind to interpret the small scale of the wind irregularities.
Here we point out the Doppler shifting and the wave ter-
mination not as the only cause for the observations but as
important factors contributing to them.
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Appendix I

Suppose that the horizontal wind perturbation has a gen-
eral form,

u(z) = g(z)exp(if(z)), (12)

where g(z) and f(z) are known functions through the WKB
approximation for a background wind U(z), the exact solu-
tion to the linear wind case, or (1).

Taking into account the Parseval theorem,∫
PSD(k)dk =

1

L

∫ z1

z0

|u(z)|2dz (13)

then replacing u(z),∫
PSD(k)dk =

1

L

∫ z1

z0

|g(z)|2dz (14)

When the amplitude, g(z) varies slowly with z, the
wavenumber is given by k(z) = f ′(z), where primes repre-
sent the derivative with respect to z. If f ′(z) is a monotonic
function, changing the variable from z to k in the integral
using the inverse function, z = f ′−1(k),∫

PSD(k)dk =
1

L

∫ k1

k0

|g(f ′−1(k))|2

f ′′(f ′−1(k))
dk, (15)

where k1 = max{k(z0), k(z1)}, k0 = min{k(z0), k(z1)}.
Since the equality holds while the extremes of the inte-

gration interval are free, the integrands must be equal, that
is

PSD(k) =
|g(f ′−1(k))|2

L f ′′(f ′−1(k))
(16)

The above procedure can be considered as a generaliza-
tion of a similar one by Sato and Yamada [1994]. (A5) is a
more general equation describing the effect of the Doppler
shifting of a wave on its spectrum. In particular, this is so
for any background wind abiding the WKB approximation.

Appendix II

An alternative proof of the PSD for a wave propagating
in a linear background wind ((7) and (10)), is as follows; by
definition, the Fourier coefficient for u(z) is,

C(k) =
1
√
L

∫ ∞
−∞

H(1 −A z) (1 −A z)α−iµexp(−i k z)dz

(17)
where H(1−Az) is the Heaviside function. Changing vari-
able from z to z′ = k(1−A z) we obtain,

C(k) =
1
√
L

e−ik/A

A
k
−(1+α)+i µ

∫ 0

−∞

z
′α−iµ

exp(i z′/A)dz′

(18)

where the independent of k integral is only function of A,
µ and α. Multiplying C(k) by the complex conjugate the
dependencies of k in (8) and (11) are recovered.
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