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On the Doppler effect in a transient gravity-wave spectrum
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SUMMARY

The power-spectrum evolution of a transient gravity-wave disturbance propagating conservatively upwards
in a shear flow is examined. It is proven that the wave action for a disturbance suffering Doppler shifting is
invariant in the wave-number space. On the other hand, vertical wave-momentum flux, even when it is invariant
for waves of fixed frequency, is not invariant in the wave-number space for a transient disturbance. The principle
is used to derive a transformation law between a source spectrum and the resultant Doppler-shifted spectrum.
The Doppler-shifted spectrum has a —3 power law in the spectral tail, the asymptotic behaviour of the tail is
shown to be independent of the gravity-wave source. The result is obtained in two ways: from the gravity-wave
energy equation and also by Fourier transforming the solution to the gravity-wave equations. The derived spectral
transformation law should be a key point in spectral gravity-wave parametrizations.
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1. INTRODUCTION

Gravity-wave disturbances play an important role in determining the mean circu-
lation. They can transport momentum from the lower atmosphere to higher levels, pro-
ducing a forcing at the levels where they break or dissipate, that drives the circulation
away from the radiative equilibrium. This forcing is indeed so strong that it is thought to
be the main factor responsible for the inversion of the meridional temperature gradient
in the mesosphere (e.g. Lindzen 1981).

Gravity waves are mainly generated in the troposphere and then propagate upwards.
During their propagation the waves interact with the mean flow. The interactions can
be classified into two large groups, reversible and irreversible interactions. The former
produces a transient forcing on the mean flow, and as soon as the disturbance has passed
the mean flow recovers its original state. On the other hand, the irreversible interactions
produce changes in the mean flow which remain after the disturbance has passed that
region.

Since small-scale gravity waves can not be resolved by general-circulation models,
the irreversible interactions between the mean flow and the waves are taken into
account in general-circulation models by means of parametrizations. A gravity-wave
parametrization involves three main aspects of the waves, generation, propagation and
dissipation.

Although attempts have been made to relate gravity-wave generation with prob-
able sources (e.g. Charron and Manzini 2002), in general current non-orographic
parametrizations do not use a physical approach to trigger gravity waves, but a climato-
logical gravity-wave spectrum is specified at low altitudes.

The second aspect that a gravity-wave parametrization needs to represent is the
gravity-wave propagation. The spectral parametrizations by Warner and Mclntyre
(1996, 2001) and Hines (1997) assume conservative steady-state propagation, so that
the gravity-wave spectrum evolves following the conservation of the vertical wave-
action flux (or alternatively, the so-called vertical pseudo-momentum flux, see Mclntyre
(1981)). In other words, under conservative steady-state propagation the vertical wave-
action flux is the same at any time and at any altitude.
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The steady-state assumption is valid provided that gravity-wave sources are per-
manent and that there are no transient effects. However, sources in the atmosphere are
highly transient. In general, high-resolution observations show that the envelope of os-
cillatory disturbances in space or time has a width of a few wavelengths or periods
(e.g. Sato and Yamada 1994; Pavelin et al. 2001).

The third point that a gravity-wave parametrization needs to address is the phys-
ical process that dominates in a climatological sense the breaking or dissipation of
the gravity-wave disturbances and therefore determines the form and intensity of the
irreversible forcing to the mean flow.

Energy distributions derived from observations of horizontal wind and temperature
show an apparent universal behaviour in short vertical wavelengths. The power spectrum
has a —3 power law at high vertical wave number, and appears to be independent of
the altitude, place and season (e.g. VanZandt 1982; Allen and Vincent 1995). There
are several studies suggesting that the observed shape in the power spectrum is a
manifestation of saturation produced by the dissipation or breaking of gravity waves
(e.g. Dunkerton 1989).

A first attempt to explain the physical processes involved with the invariance of the
power spectrum was made by Dewan and Good (1986). They associated the spectral
tail to a non-interacting gravity-wave field which has a defined saturation amplitude for
each vertical wave number given by the linear instability theory. This model has received
strong criticisms by Hines (1991a).

Hines (1991b) has argued that the invariant shape in the spectrum is produced by
the Doppler shifting of gravity waves by a statistical wave field. The high-wave-number
part of the spectrum is Doppler shifted to vertical wave number m = oo, i.e. the critical
layer, where the gravity waves are eliminated by dissipative processes, while waves
with lower wave number are contributing to the formation of the tail. This spectral tail
resembles the observed characteristics of the spectrum in a limited range of vertical
wave number but the results there are dependent on the source spectrum. In general, an
asymptotic behaviour to a —1 power law is always found in Hines’s model for every
source spectrum.

It is important to note that nonlinear critical-layer interactions, proposed by Hines
as the dominant saturation mechanism, are not the ones that determine the shape of the
spectrum. The —1 power law is the result of the conservative propagation of gravity
waves; specifically, the conservation of the vertical wave-action flux. On the other hand,
the amplitude of the spectral tail is partially determined by critical-layer interactions.

In this paper, we focus on the conservative propagation of a general transient
disturbance. The idea is to find the conservation laws in the spectral space for a transient
disturbance. A transient disturbance does not conserve vertical wave-action flux for all
times and for all altitudes. The quantity that is conserved for transient disturbances is the
wave action which is not invariant for all times and for all altitudes, but it is conserved
along the so-called ray tubes.

An illustration of a general transient disturbance is a gravity-wave packet. Since the
wave activity in this case is concentrated in a spatio-temporal envelope, the vertical
wave-action flux is changing with altitude and time. The limit for long time width
of the envelope, and therefore for long altitude width, will lead to the steady state.
As is well known, the spectral width is inversely proportional to the spatial width, so
the steady-state limit in this case represents the monochromatic approximation in the
spectral space.

The steady-state source assumption and thus vertical wave-action flux conservation
has been used in earlier studies (Hines 1991b; Warner and MclIntyre 1996) to derive a
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spectral conservation law for vertical wave-number power spectra. It is worthwhile to
investigate whether the so-found spectral transformation law for steady-state sources is
also valid for transient sources.

It will be shown by two independent proofs that the conservation law in the wave-
number space for transient disturbances is qualitatively different from the one obtained
for steady-state disturbances.

Firstly, we derive an expression for a general disturbance that is propagating
upwards in a non-rotating medium with a shear flow starting from the linearized Euler
equations (section 2). The solution is expanded in horizontal wave number and absolute
frequency since the mean flow is assumed to be uniform in horizontal coordinate x and .
By means of an analytical spectral analysis of the solution we find a transformation
between the source spectrum and the Doppler-shifted spectrum. We show that for
any source spectrum the resultant spectrum after Doppler shifting has a —3 power
law in high vertical wave number (section 3(a)). These spectra are derived (Fourier
transformed) from a time-fixed vertical profile which is the way that power spectra from
observations are obtained and must be interpreted.

A second proof of the transformation law is derived starting from the wave-
action conservation equation. As the disturbance propagates conservatively in a realistic
background wind, vertical profiles at different times conserve the total wave action (the
wave action integrated in space). A proof of this result is given in section 3(b). On the
other hand, a comparison between two altitudes must conserve the vertical wave-action
flux integrated in time.

Finally, in section 4, the theoretical results are confronted with a numerical ex-
periment. A Gaussian wave packet is propagated in a background wind with vertical
shear. The evolution of the wave packet shows that vertical profiles conserve the total
wave action, while total vertical wave-action flux is not conserved. The power spectrum
resulting from the numerical experiments agrees with the analytical power spectrum
calculated from the spectral transformation law found in the theory.

2. CHARACTERISTICS OF THE SOLUTION

Consider linear adiabatic perturbations in a non-rotating atmosphere consisting of
an inviscid fluid, where the background conditions are given by a constant buoyancy
frequency N and a horizontal wind U(z), where z is height. Under the Boussinesq
approximation, the resulting equation for the vertical velocity perturbation w is (e.g.
Bretherton 1966; Booker and Bretherton 1967)

D, V2w — d,,UD;d,w + N2, w =0, (1)

where D; = (0; + Udy), 0y = 9/0t, 9, =9/dx, d; =d/dz, with double subscripts

denoting double derivatives.
Since the mean flow is uniform in x and ¢, we write the solution of (1) in the form
w(x, z, 1) =wi(2) e, 2)

where w is the ground-based frequency and k the horizontal wave number. Substituting
(2) in (1), the well-known Taylor—Goldstein equation is obtained:

N2k? N kd,. U
(w—kU)  w—kU

Equation (3) can be simplified taking usual approximations (Hines 1991b; Chimonas
1997). These are the hydrostatic approximation and to neglect the term related to the

d..w + { — k2} wi = 0. 3)
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curvature of the background wind. Under the hydrostatic approximation the perturbation
field can be considered as quasi-horizontal (horizontal wind perturbation # >> w) and
therefore the —kZw term can be neglected. Then, the resulting equation is

N2k?

d;;wy + mwl =0.

“)
We also assume that the characteristic distances for vertical changes are longer than
one wavelength. This condition is satisfied for Richardson number much larger than
1/4, namely Ri = N?d.U~?>> 1/4, which allows a solution in (4) using the WKB*
method:
w(x, z,1) = wo (@)1/2 el —kxE 5 m(2) dz/)’ 5)
m
where wq is the wave amplitude, m is the vertical wave number at the reference level
that is assumed to be at z =0, and m is the vertical wave number at z. The positive
and negative signs indicate waves propagating upwards and downwards, respectively.
To ensure that the above equation is a solution of (4), the following dispersion relation
must be satisfied:
) k*N?
m=——e.
(0 — U(2)k)?

The so-found solution (5) is monochromatic in the sense that, at any given altitude,
an observer sees a wave with a well-defined frequency and wave number. Obviously this
is not the most general case. Actual sources are localized both spatially and temporally
or, even if they are extended, they have non-periodic shapes which produce a wide
spectrum of frequencies w and wave numbers k and m.

The boundary conditions of the atmosphere (it does not have an upper limit) allow
continuous modes, so the general solution is obtained through a double Fourier integral
in w and k:

1 N /2 . z ,
w2, 1) = / / Wik ) (7)) ik do )

The function w(k, w) represents the spectral amplitude of the contributing waves. Note
that, for the time being, w(k, w) is not the maximum amplitude of the vertical wind
perturbation and by construction it is altitude independent.

The choice of only two spectral variables in (7) can be traced back to the existence
of the dispersion relation (6). The fact that there is a dependence between wave number
and frequency allows the use of only two of the three variables and, since the mean
flow is non-uniform in z, the absolute frequency w and horizontal wave number k are
used as independent variables. A similar point of view was used by Zhu (1994), but he
concentrated on the dissipation rather than Doppler-shifting effects.

The spectral amplitude can be obtained by Fourier transforming the velocity per-
turbation, w(x, z, t), at the reference level (z = 0):

(6)

~ 1 ~
Wk, ) = e / / w(x, 0, 1) e @k qx qz. (®)

The vertical velocity at z =0, w(x, 0, t), may be envisioned as the wave forcing at the
boundary condition that is generating the disturbance.

* Wentzel-Kramers—Brillouin.
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The phase average wave energy of the disturbance per unit volume is given by
We = Loo? + w?) + 1 poN222, ©)

where pg is the mean density, ¢ is the vertical displacement (D;{ = w), and overlines
represent a phase average of the fields.

The first term of (9) is the kinetic energy of the disturbance and the second one
is the potential energy. We use the principle of energy equipartition (Lighthill 1978) to
express the wave energy as a function of velocity only:

W, = po(u2 + w2). (10)

Since we are considering quasi-horizontal motions, the wave energy in this approxima-
tion becomes .
W, = pou?. (11)

We have found an expression of wave energy as a function of horizontal velocity
perturbation only. Therefore, we derive the horizontal velocity perturbation from the
mass conservation equation and the vertical velocity perturbation, (7):

1 ~ m 12 i(wt—kx—i—fzmdz/)
u(x,z, t)= 7 uk, w) m_o e 0 dow dk, (12)

where u(k, w) = —(mo/k)w(k, ) by definition. Assuming that #(k, w) is known, the
above equation gives the horizontal velocity perturbation at any place and time.

3. THE VERTICAL WAVE-NUMBER POWER SPECTRUM

Waves in a fluid can exchange energy with the mean flow. In particular, when a
wave disturbance propagates upwards in a shear flow the wave energy is not conserved.
However, there is a quantity that is being conserved in the waves that is called the wave
action (Bretherton and Garrett 1968; Lighthill 1978) defined as the wave energy density
divided by the intrinsic frequency.

The wave-action conservation equation is coherent with each component of the
solution (12); moreover, each component conserves the vertical component of its wave-
action flux. Nevertheless, when a general transient disturbance is considered the vertical
component of the wave-action flux at any fixed time is not conserved because the wave
pattern is not stationary. This indicates that the spectral transformation law deduced from
the conservation of the vertical component of the wave-action flux cannot be applied for
a localized transient disturbance at a fixed time. In order to derive a transformation
law, we examine the problem from two points of view: firstly, starting from the general
solution and transforming the spectral domain in section 3(a); secondly, examining the
wave-action conservation equation in section 3(b).

(a) The transformation law derived from the general solution

To examine the effects of Doppler shifting in the vertical wave-number power
spectrum we compare a reference vertical wave-number power spectrum, which here
is referred to as the source spectrum, with the resultant vertical wave-number power
spectrum after Doppler shifting has taken place.

The source spectrum is the spectrum around the reference level; it may be identified
as the spectrum at tropospheric altitudes. We calculate it by Fourier transforming the
horizontal perturbation profile around z = 0. In the same way, the Doppler-shifted
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spectrum is obtained by Fourier transforming the horizontal perturbation profile around
z = z1 where the background wind is U = U (zy).

In order to obtain the power spectrum as a function of the vertical wave number,
we change variable in (12) from w to m. The variable change is performed for a small
enough altitude interval (say, z; =z1 — L/2 to zy = z; + L/2) where the background
wind U can be considered constant in a similar way to Hines (1991b) and Warner and
Mclntyre (1996); thus we take into account the changes produced by the background
wind on the power spectrum below the interval in consideration. The calculated power
spectrum represents the z; altitude (and its neighbourhood). Also note that the length of
the interval L must be longer than the characteristic wavelength of the disturbance.

Then (12) is written within the interval from z; to z 7 as

12
u(x, z, 1) = QaL)"'/? // i(k, w(m)) (ﬂ> el@i—kxtm@=z)tatm)y, o dm dk,
mo

(13)
where m = m(z1; w) and @ (m) is the phase of the mode at z;. The 2-D Fourier transform
in (k, m) is defined by

~ o f .
Fk, m) = (2;1L)—‘/2/ / u(x, z, 1) e 1Mk gy gz, (14)
—00 JZ;

Calculating the 2-D power spectrum (defined as the square of the absolute value of
the Fourier transform) from (13), and taking into account that 9,0 = —N km~2, the
resulting power spectrum is

212

~ - N
|F (k, m)|* = [t(k, w(m>>|2m (15)

m3'

Integrating on the horizontal wave number in order to obtain the power spectrum
only in terms of the vertical wave number, we obtain

N2
; / K2 i(k, w(m))|? dk. (16)

|Fm)? =f o, 012 dk =
mom

To find the power spectrum at the reference level z = 0, note that m(z = 0, w) = my,
U (0) = Up and N (0) = Ny; then (16) becomes

2

N -
|Fo(mo)|2=m—‘j/k2|u(k,w(mo))|2dk, (17)
0

where | Fp|? is the source spectrum. This spectrum is thought to be free of Doppler
effects. Note that, depending on the characteristics of the problem in consideration, this
spectrum may be regarded as the initial spectrum or the incident spectrum.

The relationship between the Doppler-shifted spectrum and the source spectrum is
obtained replacing (17) in (16) and noting that # is an altitude invariant quantity:

N2 m3
|F(m)|* = | Fo(mo)|*——3- (18)
Nym
Equation (18) can be regarded as a transformation law which relates the source spectrum
amplitude to the amplitude that the mode has after the disturbance has suffered Doppler
shifting by the relative background wind AU = U — Uj,.



GRAVITY-WAVE SPECTRA 1221

Normalized PS

10 “ L o AT RN

0.0001 0.0010 0.0100 0.1000
m [cy/m]

Figure 1. The Doppler-shifted spectrum of a constant source spectrum for different background winds: charac-
teristic wave number m. = 2 km~! (continuous line), 0.7 km~! (dashed) and 0.3 km~! (dash-dot).

Taking into account the dispersion relation (6) and that the ground-based frequency
and the horizontal wave number are constant during the propagation, the relationship
between the vertical wave number at the reference level and the one at z; is

No N
— =AU + —. (19)
mo m

Finally, changing variables in (18) from mqg to m using (19), we obtain the power
spectrum in a height interval characterized by a background wind U for an arbitrary
source spectrum:

2 No

2 _
Fm)l” = N+ AUm/N)?’

(20)

No
Fo
(AU + N/m)

The power spectrum in (20) has a —3 power law at high wave numbers in agree-
ment with observations. The spectral behaviour for high wave numbers is not altered by
the shape of the source spectrum since the transformation (19) becomes wave-number
independent for m > No/AU when it is assumed that the source spectrum contains in-
tensities around the characteristic wave number, m. = N /AU (this assumption ensures
the existence of the tail). On the other hand, the Doppler shifted spectrum for wave
numbers lower than m. depends on the original source spectrum. This is the part of the
spectrum keeping some information about the sources. We will further deal with this in
section 3(c).

Figure 1 shows a normalized constant source spectrum that is propagating in
different background winds. The three curves are for N = 0.02 m s~! and background
winds of AU = 10, 30 and 70 m s~!. As the background wind increases, the amplitude
of the spectral tail diminishes and the spectrum resembles the —3 power law at lower
wave numbers.
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(b) The transformation law derived from wave-action conservation

We now derive the conservation principle that governs the spectral transformation
law (18). We start from the equation of wave-action conservation (Lighthill 1978):

W: W:
8,Q+V (ch>_0, 21
where €2, the intrinsic frequency, is the frequency relative to the background wind
(2 =w — kU), ¢ is the group velocity vector, and W, = W, (x, z, 1) is the wave energy
density. Equation (21) establishes that the wave action is transported conservatively
along the path traced by the disturbance.

In what follows, we assume a wave packet with a fixed horizontal wave number. If
it were not the case, an integration in x must be performed and W; must be interpreted
as We(z, t) = 2m) ! ffooo W:i(x, z, t) dx. In any case, (21) is reduced to

W, W,
atﬁr + 0. <§rcgz> =0. (22)

Now we integrate in altitude at a fixed time, the altitude interval is chosen to be
long enough to ensure the complete disturbance is inside it:

Zf Wr Wr
o [ e (M)
L Q Q ¥

As the wave energy density is zero at the extremes, the resulting equation is

W,
3 / —Ldz=0. (24)
1 . Q

i

zf
=0. (23)

<i

This expression shows that vertical profiles for a general disturbance conserve the wave
action. In other words, if the total wave action of two vertical profiles at different times
are compared, they are equal.

Density changes with altitude do not affect the shape of the spectrum, they only
increase the amplitude uniformly, therefore they are not taken into account. Using the
Parseval theorem and replacing (11), we obtain

Su 1 [ IFmP
—dz== dm = constant. 25)
5 2 2 Q

We compare two vertical profiles at different times, one where the disturbance
is located in the reference background wind and the other when, after an upward
propagation, the disturbance is located in a background wind U. Besides, we use the
dispersion relation (6) so the power spectra are related by

/ S IF )P dm = / S (o) dmo. 26)

The integration variable on the right-hand side is transformed from mg to m, and note
that dmg/dm = m% /m? from (19). Then the power spectral amplitudes are related by

2 .3

2 o N7 my
|F(m)|” = [Fo(mo)|”— 3 (27)
Nom
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Figure 2. Wave energy per unit mass of a disturbance propagating upwards. Lighter contours show higher
wave energy (contours are 0.075, 0.1, 0.25, 0.5 and 0.75). Horizontal and vertical straight lines show the path
of integration (see text for details).

Therefore, we recover the transformation law obtained in (18).

An illustration of the differences between the wave action and the vertical flux
invariance can be seen in Fig. 2, which shows the path of the envelope (wave energy
density) of a disturbance which is propagating conservatively upwards (see details in
section 4). The total wave action observed by a radiosonde launched at time 7y which
measures from z; to z 7 is the same as that measured by a radiosonde launched at #;; the
power spectra are related by the derived transformation law (27).

On the other hand, if we measure the perturbation of the disturbance at fixed
altitudes (say zo, and z;) during the entire passage of the disturbance, for instance
from 1 to ty (see Fig. 2), the vertical wave-action flux integrated in time is height
invariant. This results from (22), which, integrated in time between #; and 7, gives
0, ftff (Wy/ )¢y, dt = 0. If we want to examine the disturbance from the spectral point
of view in this case we will have frequency power spectra but not vertical wave-number
power spectra. These frequency power spectra will conserve vertical momentum flux.

In the case of a monochromatic event, the wave pattern is stationary and the first
term of (21) is zero since, obviously, a monochromatic wave has a fixed wave frequency.
Therefore monochromatic waves conserve the vertical wave-action flux even for a fixed
time profile. They are expected to have a different spectral behaviour (Pulido and Caranti
2000). These events are sporadic because they require a source that excites a single
mode and also the source excites it for a long time. Even topographic waves, if they
are generated by a non-steady incident flow, have a broad frequency spectrum (Lott and
Teitelbaum 1993).

(c) The source spectrum influence
Figure 3 shows a curve representing the relation between a wave number in a
background wind Uy and the wave number refracted by an environment where the
characteristic wave number is m. (defined in section 3(a) as NgAU ~'). The strongest
effect is observed at incident wave numbers belonging to the neighbourhood of m.
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Figure 3. The refracted wave number m as a function of the incident wave number mq (see text). Note the
difference of axis scales. For a monotonic mean wind, waves with mg > m. should be interpreted as absorbed
waves through critical layers instead of Doppler shifting to negative values.

which after Doppler shifting will produce the spectral tail. Thus, the more refracted
the wave packets are, the less monochromatic their characteristics will be. The latter
fact contributes to justify our approach of using a continuous spectrum instead of
monochromatic waves.

We would like to point out that any power law in the source spectrum results
after Doppler shifting in the same —3 slope. In fact, let us take a spectrum of the
shape |F0(mo)|2 = amg. Clearly, for p positive (negative), high (low) wave numbers
are dominant. The resulting power spectrum is

a
m3(1/me + 1/m)3+r’

The —3 power law is recovered for high wave numbers (m > m.). In particular,
if the source spectrum already has a —3 slope, this spectrum is conserved under the
Doppler shifting. Moreover, the amplitude of the tail is also conserved. This means that
the transformation is transparent to the —3 power law*.

To illustrate the independence of the source spectra, Fig. 4 shows the Doppler-
shifted power spectra for three source power spectra (a constant power spectrum, a —1
power law, and +1 power law). These power spectra have exactly the same asymptotic
—3 power law.

The Doppler-shifted spectral tail is composed of waves that originally were within
the range m./2 < mg < m. The lower limit goes to m. in the Doppler-shifted spectrum
which marks the division between the low-wave-number spectral region, where a
general behaviour is not defined by Doppler shifting (it depends on the sources), and the
spectral tail, which has a completely determined power law given by Doppler shifting.

|F(m)|* = (28)

* Figure 1 apparently contradicts this fact since there are different amplitudes for different winds. The wave
spectrum that reaches, say, a wind U and already presents a slope —3 should not be further altered but Fig. 1
suggests it is. An explanation is found in the behaviour of wave numbers in the neighbourhood of m.. If there the
slope is already —3 then the spectrum is transparent to the Doppler shifting. However, the spectra shown in Fig. 1,
which come from a constant spectrum, nearby m never have —3 slope and therefore they are altered.
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Figure 4. Source power spectra F2 = A (solid line), | Fo|?> = Amy (dotted line) and | Fy|? = Amal (dashed line),
and the corresponding Doppler-shifted power spectra. The wave-number ranges are shown with a dashed line in
Fig. 3. See text for explanation.

If the mean wind profile is monotonic with altitude from U (0) = O at the reference
level to U(z;) > 0 at the observation point, it is expected that waves contained in the
source spectrum with wave number higher than m. are eliminated through absorption
in the corresponding critical layer. Thus one can think of Doppler shifting as a ‘trans-
porting’ process from the high to the small scale. The elimination of modes does not
alter the shape in the high-wave-number part of the Doppler-shifted power spectrum, it
just imposes a high-cut wave number in the source spectrum (note this entity evolves
in time, and could be misinterpreted with the term ‘initial’ spectrum), the modes lower
than this maximum wave number m. will produce a full spectral tail with a —3 power
law.

There is an implicit approximation in the picture: there should be no effects
on the wave numbers below m. in the original spectrum; however, waves in the
immediate left neighbourhood of m. are probably being altered, among other things,
by dissipation and by degradation into turbulence during the propagation up to the
observation point. With respect to the tail region in the resultant spectrum, we may
consider that, within an interval from m. to some wave number my, the spectrum is
dominated by conservative Doppler shifting and beyond my the effects of turbulence
and dissipation start prevailing.

4. NUMERICAL SIMULATION

In this section a numerical linear study of the propagation of a continuous spectrum
of waves on a shear background wind is presented. The objective is to compare the
numerical results with the theory in order to test the analytical results obtained in
section 3. The study is also an illustration of the mechanisms involved in non-steady
disturbances.

The numerical model solves (1) using the spectral method in x and ¢ (Durran 1999)
while the resulting second-order equation in z, (3), is represented by two first-order
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Figure 5. Bottom boundary conditions at level z = 0: horizontal perturbation (solid line) and vertical perturba-
tion (dotted line).

equations for horizontal and vertical velocities which are solved using a fourth-order
Runge—Kutta method with adaptative step size (Press et al. 1992). With the numerical
model we can test the analytical derivation and also the validity of the approximations
which lead from (3) to (4).

Consider that a source of gravity waves located in z =0 radiates a Gaussian
spectrum given by

Fo(mg) = —<2a2>*‘<mo—m0m>2’ (29)

) 2o ©
where mop, is the central wave number and o is the width of the spectrum. We assume
that the disturbance is periodic in x.

The problem can be thought of as a membrane located in the horizontal plane,
z = 0 (lower boundary) which is vibrating and generating perturbations. The horizontal
and vertical velocity at the bottom boundary z =0 as a function of time are shown in
Fig. 5. Since the fields are continuous and the source is emitting at z = 0, we impose the
radiation condition as upper boundary to allow only upgoing waves.

Once the spectrum is radiated from the source about ¢t = 0, it starts propagating
upwards in a medium that is characterized by a constant Brunt—Vaisild frequency and
background wind with a hyperbolic tangent profile

U= %[1 + tanh{I"(z — z¢)}]. (30)

This background wind profile (30) has ideal characteristics for studying the Doppler
effect. There, three regions can be identified (see Fig. 6): an almost constant wind,
U =0, for low altitudes (z < zs), a shear layer with a linear wind about z; and smooth
transitions to the other layers, and a third layer at high altitudes with a background wind
U=Up.

To diminish the number of free parameters, Aoy = 27 /moy and N —1 are taken as
longitude and time units, respectively. For this numerical study case, the wave packet is
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Figure 6. Background wind. The units are explained in the text.

characterized by o = 0.15mq, and k = 0.1mgp,. The background wind parameters are
chosen to be zg = 4Agm, and U, = 0.1 N Agn, the maximum vertical shear is such that the
minimum Richardson number is 100. Taking typical values N = 0.02 s~!, Agm = 5 km,
the maximum background wind would be U,, = 10 m s~!. In practice, the numerical
experiments are performed with the bottom boundary at z = —3Agy, so that we can
examine the whole envelope at r = 0.

The vertical profiles of the horizontal perturbation at the initial time and after
Doppler shifting has taken place at r = 1000N~! are shown in Fig. 7. Even when
the wave packet is propagating towards the critical layer (the vertical wave number is
increasing), the amplitude of the perturbations are diminishing.

The differences between the vertical profiles calculated with the approximate
equation, (4), and with the exact Taylor—Goldstein equation (3) are lower than 3%. As
expected these differences diminish for higher vertical wave numbers.

Figure 8 shows the wave energy density as a function of z for different times;
when the wave packet is located entirely above the shear layer the envelope has lost
its Gaussian shape due to dispersion and Doppler shifting. In particular, it is not
symmetrical—the upper part is broader than the lower part. The wave energy density
as a function of z and ¢ is shown in Fig. 2, note that the maximum amplitude of the
envelope decreases with time.

The integral over the altitude interval of wave energy density, wave action and the
vertical component of momentum flux are shown in Fig. 9. Since a periodic forcing
in the horizontal is assumed, the integral of wave energy can also be interpreted as the
wave energy per horizontal longitude unit. Because the wave packet is refracting towards
higher vertical wavelengths (lower relative frequency) the wave energy is decreasing as
the time goes on, as clearly seen in Fig. 9. The same feature is observed for the vertical
momentum flux. Thus, in complete agreement with the theoretical analysis, the total
vertical momentum flux is not conserved in vertical profiles: it is diminishing when
there is Doppler shifting towards higher wave number. On the other hand, the total wave
action is conserved. As already mentioned, this means that if we launch two radiosondes
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at different times, the measured vertical profiles and their power spectra conserve wave
action.

Different behaviour would be found with a sonde measuring, at a fixed altitude,
the complete passage of the disturbance as the time goes on. In this case, shown in
Fig. 10, the vertical momentum flux integrated in time is conserved so that its divergence
vanishes, while wave action and wave-momentum flux integrated in time are increasing
when the disturbance is suffering Doppler shifting towards higher wave numbers. The
temporal width of the wave packet is widening with Doppler shifting, so if we were
measuring with the fixed altitude sonde, it would be necessary to measure a very long
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integrated in time.

time (the temporal width is infinity at the critical level since group velocity goes to zero)
to satisfy the conservation of the integral in time of vertical momentum flux. In fact, the
divergences of vertical flux that are observed at high altitudes in Fig. 10 are because the
disturbance (say the lower part of the envelope) is still at those altitudes at the upper
limit of time considered in the integration.

The validity of the derived spectral law (20) is readily tested. Vertical profiles of
the disturbance at different times are numerically Fourier transformed to get the power
spectrum; this numerical power spectrum is compared with the predicted one from the
theoretical transformation law.
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Figure 11 presents the numerical power spectra (dotted lines) resulting from the
propagation of the disturbance (29) at different background winds defined by (30).
The analytical power spectra from (20) (continuous lines) are also shown in Fig. 11. The
numerical power spectra agree rather well with the theoretical ones for any background
wind.

Figure 11 shows two features of the transformation law. The first feature is that
the amplitudes of a component of the spectrum at different background winds are
related by (20). Note the crosses in Fig. 11 showing the amplitude of the central wave
number for different background winds which fits almost exactly the —3 straight line
(dashed line). The other feature shown in the theory was the appearance of a spectral
tail with a —3 power law when the source power spectrum has amplitudes near the
wave number m.. Figure 11 shows the Doppler-shifted power spectrum by a background
wind of U = 0.14 N Ao, which is of the order of the smallest phase speed of the packet,
N (mom — o)~'. This spectrum presents the asymptotic behaviour characteristic of the
transformation law which produces a spectral tail with a —3 power law.

5. DISCUSSION AND CONCLUSIONS

Perhaps the most important conclusion is the realization that there are profound
differences when using monochromatic or continuous source spectra in the resulting
vertical wave-number spectrum. These differences can be ascribed to the interference
between components in the continuous case leading to a —3 spectral tail while the
monochromatic one, free of such interference effects, gives a —1 tail. These interfer-
ence effects are directly related to the fact that the vertical wave number can not be
considered a spectral variable from a mathematical point of view: different bins (modes)
interchange energy in this space even in this linear problem and therefore amplitudes of
bins in this space can not be considered time independent. The only case where the
amplitudes are time independent is in a monochromatic wave because it has a stationary
pattern in the physical space.
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Although there are previous works that examine the Doppler effect (Hines 1991b;
Warner and Mclntyre 1996), they are based on the vertical wave-action flux conser-
vation. The spectral conservation law obtained in those works can only be used for
permanent gravity-wave sources. Gravity-wave parametrizations must use the derived
transformation law (18) in order to evolve the source power spectrum, specially those
parametrizations which pretend to represent highly transient and intermittent sources
(e.g. convection, fronts) as well as parametrizations with stochastic sources.

If transient phenomena are represented by the assumption of vertical wave-action
flux conservation, this assumption leads to an overestimation of the amplitudes at
high vertical wave-number modes, which in turn results in unrealistic momentum
flux deposition at low altitudes. Furthermore, the wave energy increases with Doppler
shifting towards higher vertical wave number for a steady-state disturbance. On the
other hand, for a transient disturbance the wave energy decreases with Doppler shifting
towards higher vertical wave number. The representation of transient phenomena in
gravity-wave parametrizations and the differences with the steady-state representation
will be addressed in a future work. The results for transient disturbances obtained here
can be applied directly in current gravity-wave parametrizations since the derivation
follows the main gravity-wave assumptions, the hydrostatic approximation and a non-
rotating medium, taken in current spectral schemes (e.g. Hines 1997; Warner and
Mclntyre 2001).

The resultant Doppler-shifted spectrum does not depend on the shape of the source
spectrum. As long as there are waves around m., there will be a —3 tail after Doppler
shifting.

So far the —3 power law and the saturation of the wave field have been identified
in the literature as a manifestation of the same physical process; however, following the
results of this work, they can be independent features. A direct example of this fact is
that there can appear observed power spectra with a power law close to —3 which are
saturated or unsaturated and the shape is only a manifestation of a wave field with linear
and conservative propagation.

For a saturated wave field the conservative Doppler shifting could be carrying part
of the energy to high vertical wave number and also regulating the amount of energy
that is available to be dissipated in the critical layer. In this case, the Doppler shifting
could be determining the spectral tail in the observed spectral range while dissipative
processes related with the critical layer could be dominant at higher vertical wave
number. However, dissipative and nonlinear processes could also be playing a role in the
same spectral range specially at the highest vertical wave-number part. Since we have
only considered linear and conservative propagation we can not evaluate the relative
importance of dissipation and nonlinearities with the present model.
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